Electronic Supplementary Information

Organic Multi-electron Redox Couples-induced Functionalization for Enabling Ultrahigh Rate and Cycling Performances of Supercapacitors

Ning An^a, Zhongai Hu^{b, *}, Hongying Wu^b, Yuying Yang^b, Ziqiang Lei^b and Wenkui Dong^a

^a School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

^b Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.

Calculations of specific capacitance, energy density and power density based on the galvanostatic charge-discharge curves:

(1) In three-electrode system, specific capacitances derived from galvanostatic tests can be calculated from the equation:

$$C = I \Delta t / m \Delta V \tag{1}$$

where *m* (g) is the mass of active electrode material in the working electrode, ΔV (V) is the potential drop during discharge, Δt (s) is the discharge time and *I* (A) is the discharging current.

(2) In two-electrode system, specific capacitances of capacitor derived from galvanostatic tests can be calculated from the equation:

$$C = 4(I\Delta t/m\Delta V) \tag{2}$$

where *m* (g) is the total mass of active electrode material in two electrodes, $\Delta V(V)$ is the voltage drop upon discharging, Δt (s) is the discharge time and *I* (A) is the discharging current.

Energy density (E) and power density (P) derived from galvanostatic tests can be calculated from the following equations:

$$E = [C (\Delta V)^2]/8$$

$$P = E/\Delta t$$
(3)
(4)

where *E* (Wh kg⁻¹), *P* (W kg⁻¹), Δt (s), ΔV (s) and *C* (F g⁻¹) are the specific energy, specific power, discharge time, potential window, specific capacitance, respectively.

Fig. S1 The specific capacitance of DT-RGNs electrode materials at 1 A g^{-1} with different mass ratios of DT (x) to RGNs (y).

Formula S2 The formation process of intramolecular hydrogen bond in 1, 5-dihydroxyanthraquinone molecule.

Fig. S3 The CV curves of 1, 5-dihydroxyanthraquinone functionalized RGNs (1, 5-AQ-RGNs 3:5) electrode material at 10 mV s⁻¹ in 1 mol L^{-1} H₂SO₄ aqueous solution.

Fig. S4 The CV curves of DT-RGNs 3:5 electrode before and after 10, 000 cycles.