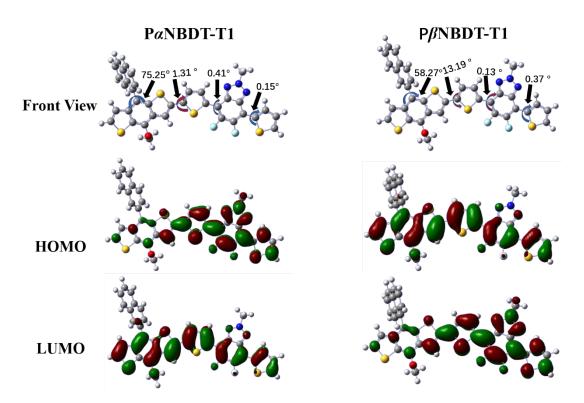
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017


Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary information (ESI)

Efficient Fullerene-Free Solar Cells with Wide Optical Band Gap Polymers Based on Fluorinated Benzotriazole and Asymmetric Benzodithiophene

Zhe Liu,‡ ^aDeyu Liu,‡ ^{bd} Kaili Zhang,^a Tingting Zhu,^a Yaqian Zhong,^a Feng Li,^c Yonghai Li,^b Mingliang Sun*^a and Renqiang Yang*^b

- a. Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100, China. *E-mail: mlsun@ouc.edu.cn;
- b. CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China. *E-mail: yangrq@qibebt.ac.cn;
- c. Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province, School of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao 266042, China
- d. University of Chinese Academy of Sciences, Beijing 100049, China
- † Electronic supplementary information (ESI) available. See DoI: 10.1039/x0xx00000x
- ‡ Zhe Liu and Deyu Liu contributed equally to this work.

Fig. S1 DFT calculated optimal geometries and electron density distributions of P α NBDT-T1 and P β NBDT-T1.

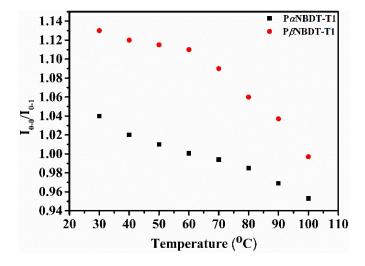
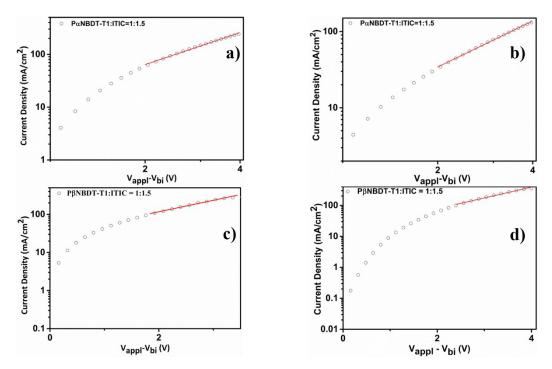



Fig. S2 $I_{0\text{-}0}/I_{0\text{-}1}$ (UV-vis absorption intensity at $\lambda_{0\text{-}0}$ and $\lambda_{0\text{-}1}$) of polymer solution at different temperature.

Fig. S3 Electrochemical cyclic voltammetry curves of the P α NBDT-T1 and P β NBDT-T1.

Fig. S4 Hole mobility characteristics of optimum devices based on P α NBDT-T1/P β NBDT-T1 and ITIC (a and c), electron mobility of optimum devices based on P α NBDT-T1/P β NBDT-T1 and ITIC (b and d).

Table S1. Photovoltaic Properties of PSCs Based on different ratios of Polymers and acceptor materials

Device	Ratio	V _{oc}	J_{SC}	FF	PCE
	(w/w)	(V)	(mA cm ⁻²)	(%)	(%)
	1:1	0.87	15.96	51.18	7.11
PαNBDT-T1/ITIC	1:1.2	0.85	17.92	55.46	8.45
	1:2	0.86	17.54	52.36	7.90
	2:1	0.84	15.25	53.41	6.84
PβNBDT-T1/ITIC	1:1	0.78	16.68	49.43	6.43
	1:2	0.74	16.74	46.50	5.52
	2:1	0.75	16.03	47.88	5.76
PαNBDT-	1:1	0.79	6.67	45.81	2.41
T1/PC ₇₁ BM	1:1.5	0.78	3.64	50.89	1.44
PβNBDT-T1/PC ₇₁ BM	1:1	0.75	8.67	58.23	3.79
	1:2	0.72	8.91	67.11	4.30