Supplementary Information

Photosensitivity of the $g-C_3N_4$ / S-doped carbon composites: Study of surface stability upon exposure to CO_2 and/or water at ambient light

By

WanLu Li^{a, b}, Enrique Rodríguez-Castellón^c and Teresa J. Bandosz^{a, b}

^a. Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.

^{b.}Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016 USA

^c.Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain.

* Whom correspondence should be addressed to: Tel; (212) 650-607; Fax: (212) 650-6107; tbandosz@ccny.cuny.edu

Fig. S1. pK_a distribution for GCN-CS/M (A, B) and GCN-CS/C (C, D) exposed to various environments.

Sample	Surface pH	pK _a 3-4 pK _a 4-5	pK _a 5-6	pK _a 6-7	pK _a 7-8	pK _a 8-9	pK _a 9-10	pK _a 10-11	All groups
GCN-CS/M initial	3.38	3.79 (0.021)	5.29 (0.076)		7.21 (0.085)		9.31 (0.117)		0.298
GCN-CS/M CO ₂ L	3.38		5.10 (0.069)		7.00 (0.088)		9.15 (0.110)	10.20 (0.029)	0.295
GCN-CS/M CO ₂ D	3.38	4.98 (0.058))	6.65 (0.087)		8.99 (0.123)			0.270
GCN-CS/M CO ₂ LW	3.94	4.07 (0.047)	5.89 (0.081)		8.91 (0.077)				0.205
GCN-CS/M CO ₂ DW	3.54		5.61 (0.071)		7.27 (0.041)		9.19 (0.082)	10.41 (0.107)	0.301
GCN-CS/M N ₂ LW	3.53	4.51 (0.039))	6.29 (0.079)		8.74 (0.085)			0.203
GCN-CS/M N ₂ DW	3.50	3.89 (0.014)		6.22 (0.082)			9.06 (0.081)		0.177
GCN-CS/M N ₂ L	3.41	4.97 (0.070))	6.84 (0.091)			9.05 (0.034)	10.15 (0.034)	0.314

Table S1. Surface pH values, peak positions and numbers of groups (in parentheses, [mmol/g]) for GCN-CS/M exposed to various environments.

Sample	Surface pH	рКа 3-4	pK _a 4-5	рК _а 5-6	pK _a 6-7	pK _a 7-8	pK _a 8-9	pK _a 9-10	pK _a 10-11	All Groups	
GCN-CS/C	4.06	3.90	4.76	5.78	6.77		8.40	9.45	10.42	1 342	
initial	4.00	(0.084)	(0.091)	(0.114)	(0.139)		(0.225)	(0.471)	(0.229)	1.342	
GCN-CS/C	3 95		4.68		6.05	7.31	8.69	9.64		1.269	
CO_2L	5.75		(0.138)		(0.155)	(0.140)	(0.229)	(0.607)			
GCN-CS/C	4.01	3.88	4.71	5.79	6.82		8.40	9.62		1 208	
CO_2D	4.01	(0.071)	(0.108)	(0.118)	(0.155)		(0.236)	(0.409)		1.398	
GCN-CS/C	3.82		4.59	5.87	6.76	7.53	8.99	9.73		1.007	
$CO_2 LW$			(0.120)	(0.100)	(0.030)	(0.138)	(0.231)	(0.389)			
GCN-CS/C	4.05		4.78		6.20	7.44	8.71	9.65		0.629	
$CO_2 DW$	4.05		(0.083)		(0.056)	(0.079)	(0.138)	(0.272)		0.029	
GCN-CS/C	3 84	3.84	4.64		6.05	7.48	8.42	9.51		1 013	
$N_2 LW$	5.04		(0.133)		(0.114)	(0.156)	(0.065)	(0.545)		1.015	
GCN-CS/C	4 04	4.04	4.52	5.59	6.49		8.02	9.56		0.834	
$N_2 DW$	7.04		(0.092)	(0.057)	(0.097)		(0.151)	(0.437)		0.007	
GCN-CS/C N ₂ L	3.91	1	4.72	5.98		7.10	8.29	9.49		1 287	
			(0.162)	(0.090)		(0.157)	(0.157)	(0.721)		1.207	

Table S2. Surface pH values, peak positions and numbers of groups (in parentheses, [mmol/g]) for GCN-CS/C exposed to various environments.

Table S3 Elemental analysis for the initial samples and samples exposed to CO₂.

Fig. S2 Deconvoluted C 1s and O 1s core energy level spectra for GCN-CS/M.

Fig. S3 Deconvoluted C 1s and O 1s core energy level spectra for GCN-CS/C.

Sample	S _{BET} (m²/g)	V _t (cm ³ /g)	V _{meso} (cm ³ /g)	V _{<0.7nm} (cm ³ /g)	V _{<1nm} (cm ³ /g)	V _{mic} (cm ³ /g)	V_{mic}/V_t
GCN-CS/M initial	166	0.223	0.154	0.053	0.059	0.069	0.309
GCN-CS/M CO ₂ L	172	0.227	0.154	0.056	0.062	0.073	0.322
GCN-CS/M CO ₂ D	161	0.217	0.145	0.056	0.065	0.072	0.332
GCN-CS/M CO ₂ LW	142	0.161	0.109	0.026	0.036	0.052	0.323
GCN-CS/M CO ₂ DW	194	0.263	0.190	0.056	0.060	0.073	0.278
GCN-CS/M N ₂ LW	163	0.224	0.155	0.053	0.058	0.069	0.308
GCN-CS/M N ₂ DW	192	0.307	0.227	0.053	0.061	0.080	0.261
GCN-CS/M N ₂ L	179	0.231	0.158	0.057	0.062	0.073	0.316

Table S4. The parameters of the porous structure for CS-GCN/M in different conditions.

	Sample	S_{BET} (m ² /g)	V _t (cm ³ /g)	V _{meso} (cm ³ /g)	V _{<0.7nm} (cm ³ /g)	$V_{<1nm}$ (cm ³ /g)	V _{mic} (cm ³ /g)	V _{mic} /V _t
	GCN-CS/C initial	326	0.248	0.092	0.129	0.142	0.156	0.629
	GCN-CS/C CO ₂ L	291	0.218	0.080	0.109	0.121	0.138	0.633
	GCN-CS/C CO ₂ D	286	0.215	0.089	0.092	0.107	0.126	0.586
	GCN-CS/C CO ₂ LW	251	0.189	0.070	0.078	0.094	0.119	0.630
	GCN-CS/C CO ₂ DW	274	0.210	0.079	0.100	0.113	0.131	0.624
	GCN-CS/C N ₂ LW	278	0.216	0.085	0.084	0.098	0.131	0.606
	GCN-CS/C N ₂ DW	290	0.213	0.067	0.112	0.125	0.146	0.685
3.5 10 ⁷ 3 10 ⁷	GCN-CS/C GCN-CS/C N ₂ L	257 _{60Hz} • 80Hz • 100Hz	0.192 GC		0.096 30Hz 40Hz	0.107	© 124	0.646 20Hz 25Hz 30Hz
$2.5 ext{ 10}^7$ $2 ext{ 10}^7$ $2 ext{ 10}^7$ $1.5 ext{ 10}^7$ $1 ext{ 10}^7$ $5 ext{ 10}^6$	E _{CB}	EVB	$8 10^{6} - \frac{1}{2}$ $3 10^{6} - \frac{1}{2}$ $4 10^{6} - \frac{1}{2}$ $2 10^{6} - \frac{1}{2}$	E _{CB}	E _{VB}	- ³ 10 ⁶ - U 2 ⁷ U 210 ⁶ - 110 ⁶ -	E _{CB}	Е _{vв}
0 -1	.5 -1 -0.5 0 Potential (V vs.	0.5 1 1.5 RHE)	0 -1.5	-1 -0.5 0 Potential (V	0.5 1 vs. NHE)	, 0 , - 1.5 -1.5	-1 -0.5 Potential	0 0.5 1 1.5 (V vs. NHE)

Table S5. The parameters of the porous structure for GCN-CS/C in different conditions.

Figure S4. The Mott-Schottky plots for GCN-CS/C, GCN-CS/M and S-doped carbon.