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Fig. S1 (a) Digital photos of commercial filter paper and its carbonized paper; (b) Demonstration of mechanical 
flexibility of the carbon paper.

 

Fig. S2 SEM images of carbon microbelts derived from commercial filter paper.
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Fig. S3 Raman spectrum of the carbon paper.



Fig. S4 SEM image of pure SnS2 flower-like microspheres.
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Fig. S5 CV curves of pure SnS2 anode.
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Fig. S6 Galvanostatic charge/discharge curves of pure SnS2 anode at different cycles.
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Fig. S7 Comparison of Coulombic efficiency.
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(a) 100mA g-1
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Fig. S8 Galvanostatic charge/discharge curves of (a) SnS2@C and (b) pure SnS2 anodes at current densities from 
100 to 2000 mA g-1.



0 100 200 300 400 500
0

100

200

300

400

500

-Z
'' (

oh
m

)

Z' (ohm)

 SnS2

 SnS2@C

Fig. S9 Nyquist plots of the SnS2@C and pure SnS2 anodes.



Fig. S10 SEM image of the SnS2@C after long-term cycling test.
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Fig. S11 Rate performance of the SnS2@C anode for Na-ion batteries.
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Fig. S12 (a) Galvanostatic charge/discharge curves of the carbon paper at 100 mA g-1 and (b) specific capacity as a 
function of cycle number.



Table S1 Comparison of the reversible capacity, cycling stability and initial Coulombic efficiency (CE) of various 
SnS2-based materials in Li-ion batteries.

Material[1] SnS2 
Morphology

1st reversible 
capacity

(mAh g-1)

Current 
density

 (mA g-1)

Capacity 
retention (cycle 

number)

1st 
Coulombic 
efficiency

Ref.

SnS2 Microsphere 771 650 74% (100) 28% [1]
SnS2 Nanosheet 535 100 96% (50) - [2]
SnS2 Nanoplate 1028 200 91% (30) 72.6% [3]
SnS2 Nanoplate 579 100 90% (50) 40.3% [4]
SnS2 Nanoflower 537 100 69% (50) 30.6% [5]
SnS2 Microflower 642 200 65% (100) 36% [6]
SnS2 Nanoplate 645 323 85% (30) 49.2% [7]

SnS2/graphene Nanoplate 864 50 704 (100) 69% [8]
SnS2/graphene Nanoparticle 738 120 76.5% (60) 71.5% [9]
SnS2/graphene Nanocrystal 1278 65 80.9% (200) 78.8% [10]
SnS2/graphene Nanoplate 687 50 94.6% (30) 36.2% [11]
SnS2/graphene Nanoparticle 1002 65 57.6% (50) - [12]
SnS2/graphene Nanoplate 1485 50 44.2% (30) 37% [13]
SnS2/graphene Nanoparticle 542 325 93% (200) 34.5% [14]
SnS2/graphene Nanosheet 705 100 130.5% (50) 42.4% [15]
SnS2/graphene Nanoparticle 569 200 98.8% (200) 34% [16]
SnS2/graphene Nanoflake 1216 80 61.1% (100) 66%

SnS2/graphene/C
NT

Nanosheet 1118.2 100 91% (100) 63% [17]

 SnS2/CNT Nanosheet 557 100 75.4% (50) 37.2% [18]
SnS2/AB Nanoflower 622.8 400 73.1% (100) 53.5% [19]
SnS2/C Nanosheet 665.8 100 64.4% (50) 42.9% [20]
SnS2/C Nanoparticle 707 50 94.5% (50) 41% [21]

SnS2/PANI Nanoplate 968.7 100 75.4% (80) 69.4% [22]
SnS2@C Nanosheet 1156 100 99.5% (200) 62.5% This 

work
[1] CNT: carbon nanotube; AB: acetylene black; PANI: polyaniline;
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