Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary data

Hollow ZnCdS Dodecahedral Cages for Highly Efficient Visible-

Light-Driven Hydrogen Generation

Jianmin Chen, Junying Chen*, Yingwei Li*

State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. *E-mail: cejychen@scut.edu.cn; liyw@scut.edu.cn

Fig. S1. (a) XRD pattern and (b) SEM image of ZIF-8 crystals.

Fig. S2. (a-b) SEM and (c-d) TEM images of hollow ZnS cages. The inset in (a) shows the corresponding XRD pattern.

Fig. S3. TEM images of (a) $Zn_{0.8}Cd_{0.2}S$, (b) $Zn_{0.4}Cd_{0.6}S$, (c) $Zn_{0.2}Cd_{0.8}S$, and (d) CdS cages.

Fig. S4. (a) TEM images of solid (a) ZnS and (b) $Zn_{0.6}Cd_{0.4}S$.

Fig. S5. Nitrogen isotherms recorded at 77 K for hollow and solid $Zn_{0.6}Cd_{0.4}S$, respectively.

Fig. S6. (a) Photocatalytic hydrogen evolution curves of catalysts prepared at different temperatures under visible irradiation from a 300 W Xe lamp ($\lambda \ge 420$ nm, 0.75 M Na₂S, 1.05 M Na₂SO₃). (b) Nitrogen isotherms recorded at 77 K for hollow Zn₆Cd₄S cages prepared at different temperatures.

Fig. S7. Photocatalytic H₂ evolution on hollow $Zn_{0.6}Cd_{0.4}S$ cages in the presence of various concentrations of sacrificial reagents: A: 0.13 M Na₂S, 0.18 M Na₂SO₃; B: 0.25 M Na₂S, 0.35 M Na₂SO₃; C: 0.50 M Na₂S, 0.70 M Na₂SO₃; D: 0.75 M Na₂S, 1.05 M Na₂SO₃; E: 1.00 M Na₂S, 1.40 M Na₂SO₃.

Fig. S8. Photocatalytic hydrogen generation as a function of irradiation time in two consecutive cycles for the $Zn_{0.6}Cd_{0.4}S$ cages.

Fig. S9. XRD patterns of hollow $Zn_{0.6}Cd_{0.4}S$ cages before and after recycling tests.

Fig. S10. TEM image of hollow $Zn_{0.6}Cd_{0.4}S$ cages after recycling tests.

Catalyst	Co-catalyst	Light source	TOF (mmol _{H2} h ⁻¹ g ⁻¹)	Ref.
Ni(OH) ₂ -Zn _{0.8} Cd _{0.2} S	Ni(OH) ₂	300 W Xe arc	7.16	58
$Pt\text{-}Zn_{0.8}Cd_{0.2}S$	Pt	300 W Xe arc	6.08	58
Zn _{0.6} Cd _{0.4} S cages	-	300 W Xe	5.68	This work
CNUB-X	Pt	300 W Xe	5.56	7
$CdS/g-C_3N_4$	Pt	350 W Xe	4.15	14
CuS/ZnS	-	350 W Xe	4.14	59
$Zn_{0.4}Cd_{0.6}S$	-	300 W Xe	3.62	28
$Cd_{0.44}Zn_{0.56}S$	-	500 W Xe	2.64	27
g-C ₃ N ₄ -CdS-NiS	NiS	300 W Xe	2.56	22
$MoO_2/Zn_{0.5}Cd_{0.5}S$	MoO ₂	300 W Xe	2.52	60
CoPt ₃ -ZnCdS	CoPt ₃	300 W Xe	2.34	19
CdS QDs/ZnCd ₅ S	CdS QDs	350 W Xe	2.13	55
PdS/CdS@ZnS	PdS	300 W Xe	2.10	29
$RGO\text{-}Zn_{0.8}Cd_{0.2}S$	RGO	AM 1.5G	1.82	17
$MoS_2/mpg-C_3N_4$	-	300 W Xe	1.03	61
$UiO-66/g-C_3N_4$	Pt	300 W Xe	1.01	62
$(CuIn)_{0.2}Zn_{1.6}S_2$	-	300 W Xe	0.98	63
CdZnS@LDH	Pt	300 W Xe	0.92	64
NiS/C ₃ N ₄	-	300 W Xe	0.48	65
$Cd_{0.7}Zn_{0.3}S$	-	300 W Xe	0.35	26
Zn _{0.8} Cd _{0.2} S	-	300 W Xe	0.19	66

Table S1. Comparison of the H₂-generation rates for various photocatalysts under visible light irradiation ($\lambda > 420$ nm).