Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

ELECTRONIC SUPPLEMENTARY INFORMATION

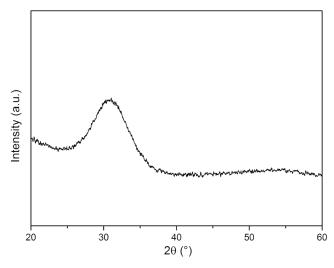
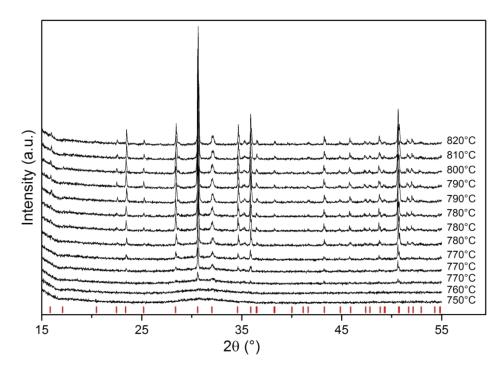



Fig. S1: X-Ray diffractogram of the $Gd_{1.6}Sr_{0.4}Ga_3O_{7.3}$ glass elaborated by aerodynamic levitation coupled to CO_2 laser heating.

Fig. S2: In situ X-ray diffraction data of the $Gd_{1.6}Sr_{0.4}Ga_3O_{7+\delta}$ parent glass heated from 750°C up to 820 °C (some measurements have been repeated at a same temperature to track possible isothermal evolution). Only the melilite phase crystallizes from the glass at around 770°C, in good agreement with the DSC measurements. The red marks correspond to the indexation of the $Gd_{1.6}Sr_{0.4}Ga_3O_{7+\delta}$ melilite.

Fig. S3: a) Volume and b) cell parameters (*a* (black) and *c* (blue)) according to the lanthanide radius, of the stoichiometric (square) and non-stoichiometric (diamond) melilite ceramics. The Tb_{1.4}Sr_{0.6}Ga₃O₇₊₆ cell parameters decrease to a lesser extent than those of the gadolinium and europium based-materials, in agreement with their lower substitution level.

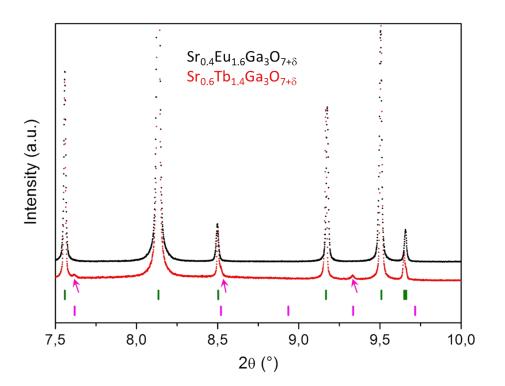


Fig. S4: Synchrotron powder diffraction data of Eu_{1.6}Sr_{0.4}Ga₃O₇₊₆ (in black) and Tb_{1.4}Sr_{0.6}Ga₃O₇₊₆ (in red) ceramics (enlargement of the 7.5 to 10° 20 zone). The set of green and pink vertical lines corresponds to Tb_{1.4}Sr_{0.6}Ga₃O₇₊₆ (melilite) and Tb₃Ga₅O₁₂ (garnet) reflection positions respectively. The arrows point to the Tb₃Ga₅O₁₂ secondary phase.

	U11	U22	U33	U12	U13	U23
Sr1	2,18(1)	2,18(1)	1,49(2)	1,42(2)	0,13(2)	-0,13(2)
Tb1	2,18(1)	2,18(1)	1,49(2)	1,42(2)	0,13(2)	-0,13(2)
Ga1	0,85(2)	0,85(2)	1,36(4)	0	0	0
Ga2	1,33(2)	1,33(2)	0,48(3)	0,34(3)	0,01(2)	-0,01(1)
01	3,93(5)	3,93(5)	0,08(5)	0,84(9)	0,23(4)	-0,23(4)
02	2,3(6)	7,29(9)	2,52(6)	-2,46(6)	1,35(5)	-2,09(5)
03	4,9(1)	4,9(1)	0,7(9)	3,8(1)	0	0

Fig. S5: Anisotropic displacement parameters (ADP) (Å² x 100) of the final Tb_{1.4}Sr_{0.6}Ga₃O₇₊₆ ceramic determined from the combined Rietveld refinement.

	Archimede	es' method	Rietveld Refinement	
	ρ (glass) g.cm ⁻³	ρ (ceramic) g.cm ⁻³	ρ (ceramic) g.cm ⁻³	
$Eu_{1.6}Sr_{0.4}Ga_3O_{7+\delta}$	6.25 ± 0.05	6.26 ± 0.05	6.20 ± 0.01	
$Gd_{1.6}Sr_{0.4}Ga_3O_{7+\delta}$	6.28 ± 0.05	6.32 ± 0.05	6.33 ± 0.01	
$Tb_{1.4}Sr_{0.6}Ga_3O_{7\text{+}\delta}$	6.16 ± 0.05	6.13 ± 0.05	6.17 ± 0.01	

Fig. S6: Density of the glasses and corresponding ceramics determined from Archimedes' method and calculated from Rietveld refinement.

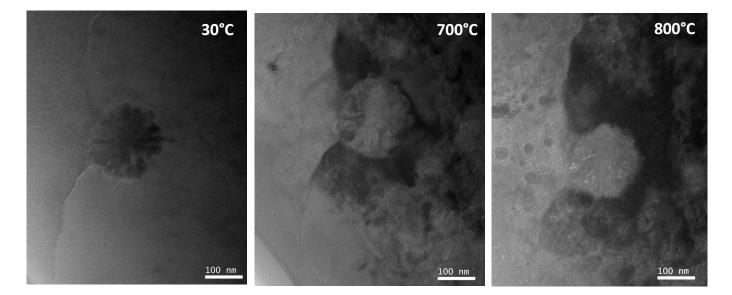


Fig S7: In situ observations of the Tb_{1,4}Sr_{0.6}Ga₃O_{7.2} ceramic heated from room temperature up to 800 °C. Bright field TEM images showing two melilite grains separated by a grain boundary and one Tb₃Ga₅O₁₂ nanoparticle aggregate. No microstructural evolution can be observed. Black marks appearing at 800°C are related to carbon contamination during STEM experiment.

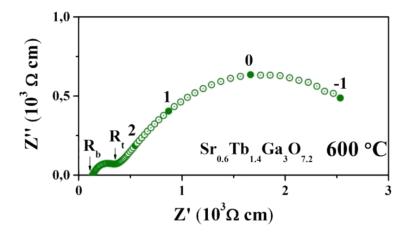


Fig S8: Complex impedance plots at 600 °C for the Tb_{1.6}Sr_{0.6}Ga₃O_{7.2} ceramic. R_b and R_t denote the bulk and total resistivities, respectively. The numbers denote the logarithms of selected frequencies marked by filled circles.

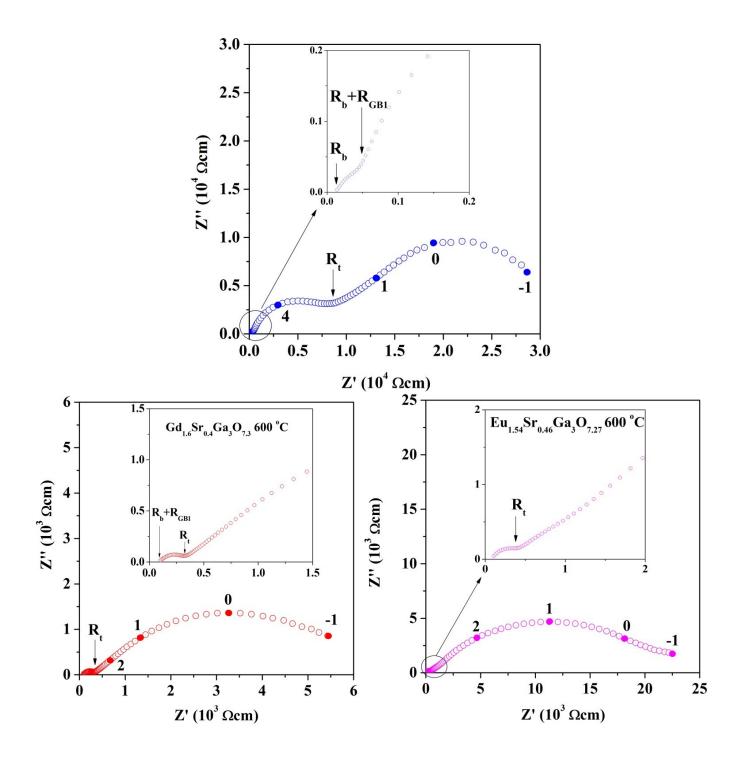


Fig. S9: Complex impedance plot at 500 °C (top) for Gd_{1.6}Sr_{0.4}Ga₃O_{7.3} ceramic and 600 °C (down) for Gd_{1.6}Sr_{0.4}Ga₃O_{7.3} and Eu_{1.54}Sr_{0.46}Ga₃O_{7.27} ceramics. The numbers denote the logarithms of selected frequencies marked by filled circles. The insets enlarges the plots in the high frequency range.

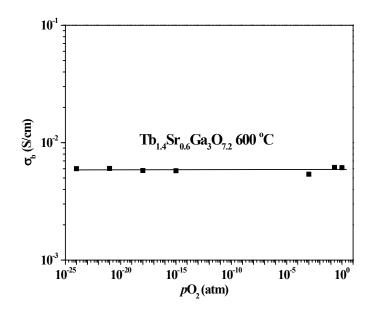


Fig. S10: Bulk conductivity as a function of pO₂ for Tb_{1.4}Sr_{0.6}Ga₃O_{7.2} No evolution is observed, proving the pure ionic conductivity of these ceramics.

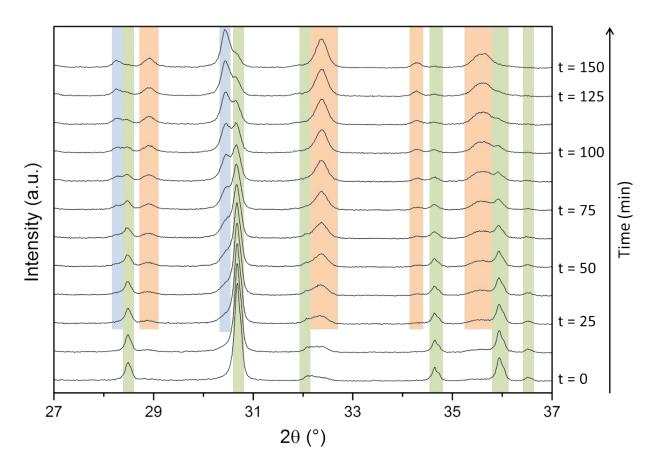


Fig. S11: in situ XRD measurement of the Tb_{1.4}Sr_{0.6}Ga₃O₇₊₆ ceramic at 900°C for 2h30min. The diffractograms were acquired each 12.5 min. Green bands correspond to the Tb_{1.4}Sr_{0.6}Ga₃O₇₊₆ reflections whereas the blue and orange ones are related to the degradation into TbSrGa₃O₇ (stoichiometric melilite) and Tb₃Ga₅O₁₂ (garnet) phases respectively.

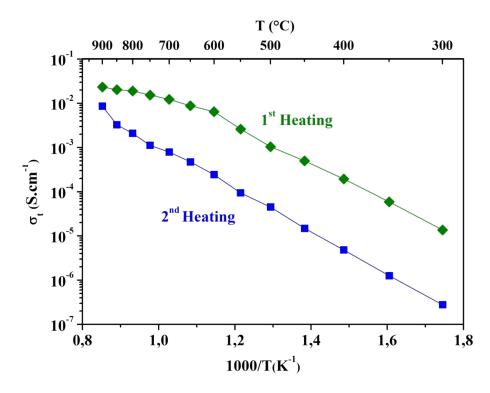


Fig. S12: Total conductivity of a Tb_{1.4}Sr_{0.6}Ga₃O_{7+δ} ceramic bead, after a first (green) and a second heating cycle (blue).

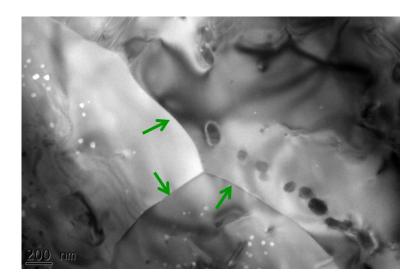


Fig. S13: Bright field TEM micrograph of intact thin grain boundaries (green arrows) in the Tb_{1.4}Sr_{0.6}Ga₃O₇₊₆ ceramic after ionic conductivity measurements at high temperature.