Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

In-situ encapsulate Fe₃O₄ nanosheet arrays with graphene layers as anode for

high-performance asymmetric supercapacitors

Jinghuang Lin¹, Haoyan Liang¹, Henan Jia¹, Shulin Chen¹, Jiale Guo¹, Junlei Qi^{*1},

Chaoqun Qu², Jian Cao^{*1}, Weidong Fei¹ and Jicai Feng¹

1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of

Technology, Harbin 150001, China

2. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China

*Corresponding authors: Tel. /fax: 86-451-86418146;

E-mail: jlqi@hit.edu.cn (J. Qi)

Fig. S1 Raman spectrum of g-Ni foam.

As shown in Fig. S1, it can be found that the g-Ni foam showed the weak D band at about 1350 cm⁻¹. It suggested that the synthesized graphene on Ni foams possessed a high degree of graphitization [53].

Fig. S2 (a, b) SEM images, (c) XRD pattern and (d) XPS Fe 2p spectrum of the FeOOH nanosheets.
The SEM images in Fig. S2a and S2b reveal that FeOOH nanosheets were vertically grown on the substrates. The XRD pattern in Fig. S2c confirms these nanosheets consist of β-FeOOH (JCPDS No. 34-1266) [51]. The high-resolution Fe 2p in Fig. S2d also confirm the existence of β-FeOOH [52], which is consistent with XRD results.

Fig. S3 XRD patterns of (a) Fe₃O₄ and (b) G@Fe₃O₄ samples separated from the substrates.

Fig. S4 (a) CV and (b) GCD curves of Fe_3O_4 electrode.

Fig. S5 SEM images of (a) $G@Fe_3O_4-0.5$, (b) $G@Fe_3O_4-1$, (c) $G@Fe_3O_4-3$ and (d) $G@Fe_3O_4-5$

Fig. S6 HRTEM images of (a) G@Fe₃O₄-0.5, (b) G@Fe₃O₄-1, (c) G@Fe₃O₄-3 and (d) G@Fe₃O₄-

Fig. S7 GCD curves of (a) $G@Fe_3O_4-0.5$, (b) $G@Fe_3O_4-3$ and (c) $G@Fe_3O_4-5$. (d) The calculated capacitances of $G@Fe_3O_4$ with different deposition time at 2 A g⁻¹.

In order to optimize the synthetic conditions, we conducted PECVD process for 0.5 min, 1 min, 3 min and 5 min to obtain different samples (briefly named as G@Fe₃O₄-0.5, G@Fe₃O₄-1, G@Fe₃O₄-3 and G@Fe₃O₄-5). As shown in Fig. S5, it can be found that G@Fe₃O₄ samples maintained the nanosheet morphology. Fig. S6a-S6d show the HRTEM images of G@Fe₃O₄-0.5, G@Fe₃O₄-1, G@Fe₃O₄-3 and G@Fe₃O₄-5, respectively. As shown in Fig. s6a, it can be found that the G@Fe₃O₄-0.5 is covered with about 3~4 layers of graphene. However, some parts of G@Fe₃O₄-0.5 are uncovered with graphene (marked with red arrows), which may be due to the short time deposition process. As the deposition time prolong, the graphene layers is gradually increased. It is worth noting that G@Fe₃O₄-5 are covered with thick graphene layer (7~10 layers). According to the previous researches [54,55], moderate graphene layers with high crystallinity nature are favorable for improving the electronic conductivity, mechanical properties, and electrochemical performance of G@Fe₃O₄-0.5, G@Fe₃O₄-3.

and G@Fe₃O₄-5, respectively. Based on GCD curves, the calculated capacitances are shown in Fig. S7d. It can be found that the maximum capacitance reached to 732 F g⁻¹ for G@Fe₃O₄-1 samples. Thus, we choose the optimized deposition time is 1 min. The long time deposition can lead to the thick graphene layers on Fe₃O₄, which would access to a downward trend of specific capacitance of G@Fe₃O₄ samples. Obviously, encapsulating superabundant graphene layers on Fe₃O₄ has a negative effect on electrode performance G@Fe₃O₄, mainly because of the sacrifice of contact area between Fe₃O₄ and electrolyte. Undoubtedly, it suggested that moderate graphene layers can improve the electrochemical performances of Fe₃O₄ samples.

Fig. S8 The AC impedance equivalent circuit.

As shown in Fig. S8, R_{ct} represents the charge transfer resistance, which can be estimated by the diameter of the semicircle in the high-frequency region. R_s , W_o and C_{dl} represent the bulk resistance, Warburg diffusion resistance and double layer capacitance, respectively [56-58].

Fig. S9 (a) The calculated specific capacitance of ASCs. (b) Cycling stability at 10 A g⁻¹ of ASCs.

references				
electrode materials	electrolyte	potential window	specific capacitance	reference
Fe ₃ O ₄ nanosheets	2 M KOH	-1~0 V	379.8 F g ⁻¹	1
Fe ₂ O ₃ nanotube	$1 \text{ M Li}_2 \text{SO}_4$	-0.8~0.1 V	300.1 F g ⁻¹	3
Fe ₂ O ₃ @C nanoparticles	1 M Na ₂ SO ₄	-0.5~0.5 V	211.4 F g ⁻¹	4
3D-KSPC/Fe ₃ O ₄ -DCN	2 M KOH	-0.8~0.2 V	285.4 F g ⁻¹	5
Fe ₂ O ₃ nano-dots@N-dope graphene	2 M KOH	-1.0~0 V	274 F g ⁻¹	7
Fe ₃ O ₄ @FLG/PEDOT:PSS	0.5M Na ₂ SO ₃	-1.3~-0.4V	153 F g ⁻¹	8
hollow and porous Fe ₂ O ₃	0.5M Na ₂ SO ₃	-1.0~-0.1V	346 F g ⁻¹	9
NiNTAs@Fe ₂ O ₃ nanoneedles	1 M Na ₂ SO ₄	-0.8-0 V	418.7 F g ⁻¹	10

Table S1. The specific capacitance of various electrodes in the three-electrode system in

particle-exfoliated graphite/Fe ₃ O ₄	1 M KOH	-1.1~0 V	327 F g ⁻¹	11
Fe ₃ O ₄ /carbon nanotube/polyaniline ternary films	2 M KOH	-0.5~0.5 V	201 F g ⁻¹	13
Fe ₃ O ₄ nanoparticles//rGO	1M KOH	-1~0 V	241 Fg ⁻¹	14
3D Fe ₃ O ₄ /rGO	2 M KOH	-1.0~0.4 V	455 F g ⁻¹	15
Fe ₃ O ₄ /carbon hybrid nanoparticles	1MNa ₂ SO ₃	-0.6~0.3 V	455 F g ⁻¹	26
Fe ₃ O ₄ /carbon nanofibres	3 M KOH	-1.05~-0.35V	225 F g ⁻¹	27
monodisperse Fe ₃ O ₄ nanoparticles/graphene	1 M KOH	-1~0 V	368 F g ⁻¹	28
Fe ₃ O ₄ /rGO	1 M LiOH	-1.15~0.1 V	326 F g ⁻¹	29.
Fe ₃ O ₄ /CNTs	6 M KOH	-1.0~0 V	129 F g ⁻¹	30
Fe ₂ O ₃ QD/FGS	1 M Na ₂ SO ₄	-1.0~0 V	347 F g ⁻¹	31
α-Fe ₂ O ₃ /graphene	1 M Na ₂ SO ₄	-1.0~0 V	504 F g ⁻¹	32
FeOOH quantum dots	1 M Li ₂ SO ₄	-0.8~0 V	365 F g ⁻¹	33
Fe ₃ O ₄ @Fe ₂ O ₃ Nanorod	1 M Na ₂ SO ₄	-1.0~0 V	231.9 F g ⁻¹	34
Ti-doped Fe ₂ O ₃ @PEDOT	5 M LiCl	-0.8~0 V	311.6 F g ⁻¹	35
α-Fe ₂ O ₃ /carbon nanotube sponges	2 M LiCl	-1.0~0 V	296.3 F g ⁻¹	36
G@Fe ₃ O ₄	2 M KOH	-1.0~0 V	732 F g ⁻¹	This work

Table S2. Comparison of the electrochemical performance of as-fabricated ASC

device with those in previous reports.

Asymmetric supercapacitor	C _{cell} (F g ⁻¹)	Energy density (Wh kg ⁻¹)	Corresponding Power density (W kg ⁻¹)	Reference
Co ₂ AlO ₄ @MnO ₂ //Fe ₃ O ₄	99.1	35.25	800.1	1
MnO ₂ //Fe ₂ O ₃ @PPy	94.2	42.4	268.8	6
NiNTAs@MnO ₂ //NiNTAs@Fe ₂ O ₃	95.9	34.1	3197.7	10
Ni-Co double hydroxide// particle- exfoliated graphite/Fe ₃ O ₄	124.2	54	876	11
multishelled NiO hollow microspheres//	143.4	51.0	800	12

RGO@Fe ₃ O ₄				
NiCo ₂ S ₄ //Fe ₂ O ₃	124.8	44.4	1620	16
MoS ₂ -NiO//MoS ₂ -Fe ₂ O ₃	111.4	39.6	807.2	17
NiGa ₂ S ₄ microspheres//N,S-codoped graphene/Fe ₂ O ₃	123	43.6	961	18
CoMoO ₄ @NiMoO ₄ ·xH ₂ O//Fe ₂ O ₃	153.6	41.8	700	19
NiCoP nanoplates//graphene film	105.3	32.9	1301	20
oxygen-deficient Co ₃ O ₄ //AC	60.3	24.2	600	21
MnCo ₂ O ₄ @Ni(OH) ₂ //AC	141	48	1400	22
Co ₃ O ₄ nanosheets//MnO@C nanosheets	166	59.6	1529.8	23
CNFs@ZnCo ₂ O ₄ //CNFs	139.2	49.5	222.7	24
NiMoO4//AC	151.7	60.9	850	25
Ni-Co-S//porous graphene	133	60	1800	37
NiCo ₂ S ₄ /Ni ₃ S ₂ //rGO	175	62.2	800	38
ZnCo ₂ O ₄ @Ni _x Co _{2x} (OH) _{6x} //AC	65.3	26.2	511.8	39
CuCo ₂ O ₄ /CuO//RGO/Fe ₂ O ₃	93	33.0	200	40
CuCo ₂ S ₄ //AC	124	44.1	800	41
CuCo2O4/NiO//AC	155	51.8	866	42
MnCo-LDH@Ni(OH)2//AC	152	47.6	750.7	43
Ni-Co-S/graphene//carbon nanosheets	122	43.3	800	44
Meso-NiO/Ni//carbon nanocage	53.7	19.1	700	45
CC@Co ₃ O ₄ //CC@NC	116.8	41.5	6200	46
NiO@FeCo-LDH//pen ink/graphene/carbon nanotube	205	64.1	1500	47
MnNi LDH@VG//AC	160	56.8	260	48
Co(P,S) nanotubes//CC	109.5	39	800	49
onion-like NiCo2S4 particles//AC	120	42.7	1583	50
H-TiO ₂ @Ni(OH) ₂ //N–C	150.6	70.9	102.9	59
CuCo ₂ O ₄ //G@Fe ₃ O ₄	182	82.8	2047	This work

References

- F. Li, H. Chao, X. Liu, J. Jia, C. Xu, F. Dong, Z. Wen, Y. Zhang, J. Mater. Chem. A 4 (2016) 2096-2104.
- C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, H. Zhang, J. Wang, ACS Nano 9 (2015) 5198-5207.
- 3. Y. Liu, Y. Hsu, Y. Lin, Y. Chen, Electrochim. Acta 216 (2016) 287-294.
- **4.** M. Zhang, J. Sha, X. Miao, E. Liu, C. Shi, J. Li, C. He, Q. Li, N, Zhao, J. Alloys Compd. 696 (2017) 956-963.

5. L. Wang, J. Yu, X. Dong, X. Li, Y. Xie, S. Chen, P. Li, H. Hou, Y. Song, ACS Sustain. Chem. Eng. 4 (2016) 1531-1537.

6. P. Tang, L. Han, A. Genç, Y. He, X. Zhang, L. Zhang, J. R. Galán-Mascarós, J. R. Morante, J. Arbiol, Nano Energy, 22 (2016) 189-201.

- 7. L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, ACS Appl. Mater. Interfaces 8 (2016) 9335-9344.
- 8. E. Pardieu, S. Pronkin, M. Doici, T. Dintzer, B. P. Pichon, D. Begin, C. Pham-Huu,
- P. Schaaf, S. Begin-Colin, F. Boulmedais, J. Mater. Chem. A 3(2015) 22877-22885.
- 9. C. Fu, A. Mahadevegowda, P.S. Grant, J. Mater. Chem. A 4 (2016) 2597-2604.
- **10.** Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Adv. Funct. Mater. 27 (2017) 1606728.
- 11. Z. Sun, X. Cai, Y. Song, X. Liu, J. Power Sources 359 (2017) 57-63.
- 12. X.H. Qi, W. J. Zheng, X. Li, G. He, Sci. Rep. 6 (2016) 33241.
- 13. J. Li, W. Lu, Y. Yan, T. Chou, J. Mater. Chem. A 5 (2017) 11271-11277.
- 14. L. Li, P. Gao, S. Gai, F. He, Y. Chen, M. Zhang, P. Yang, Electrochim. Acta 190 (2016) 566-573.
- **15.** R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, ACS Appl. Mater. Interfaces 9 (2017) 8880-8890.
- 16. H. Fan, W. Liu, W. Shen, Chem. Eng. J. 326 (2017) 518-527.
- **17.** K. Wang, J. Yang, J. Zhu, L. Li, Y. Liu, C. Zhang, T. Liu, J. Mater. Chem. A 5 (2017) 11236-11245.
- 18. S. Liu, K.H. Kim, J.M. Yun, A. Kundu, K.V. Sankar, U.M. Patil, C. Ray, S.C. Jun,J. Mater. Chem. A 5 (2017) 6292-6298.
- J. Wang, L. Zhang, X. Liu, X. Zhang, Y. Tian, X. Liu, J. P. Zhao, Y. Li, Sci. Rep. 7 (2017) 41088.

20. H. Liang, C. Xia, Q. Jiang, A. N. Gandi, U. Schwingenschlögl, H. N. Alshareef, Nano Energy 35 (2017) 331-340.

21. G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao, Z. Zhang, Nano Energy 38 (2017) 155-166.

22. Y. Zhao, L. Hu, S. Zhao, L. Wu, Adv. Funct. Mater. 26 (2016) 4085-4093.

23. N. Y, K. Guo, W. Zhang, X. Wang, M.Q. Zhu, J. Mater. Chem. A 5 (2017) 804-813.

24. H. Niu, X. Yang, H. Jiang, D. Zhou, X. Li, T. Zhang, J.Y. Liu, Q. Wang, F.Y. Qu,J. Mater. Chem. A 3 (2017) 24082-24094.

25. S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W. Lou, Adv. Energy Mater. 5 (2014) 1401172.

- 26. J.S. Lee, D.H. Shin, J. Jun, C. Lee, J. Jang, ChemSusChem 7 (2014) 1676-1683.
- 27. C. Fu, A. Mahadevegowda, P.S. Grant, J. Mater. Chem. A 3 (2015) 14245-14253.

28. M. Liu, J. Sun, J. Mater. Chem. A 2 (2014) 12068-12074.

29. Q. Qu, S. Yang, X. Feng, Adv. Mater. 23 (2011) 5574-5580.

30. D. Guan, Z. Gao, W. Yang, J. Wang, Y. Yuan, B. Wang, M. Zhang, L. Liu, Mater. Sci. Eng.: B 178 (2013) 736-743.

31. H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S. V. Savilov, S. M. Aldoshin, Adv. Funct. Mater. 25 (2015) 627-635.

32. Q.X. Low, G.W. Ho, Nano Energy 5 (2014) 28-35.

33. J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Adv. Funct. Mater. 26 (2016) 919-930.

34. X. Tang, R. Jia, T. Zhai, H. Xia, ACS Appl. Mater. Interfaces 7 (2015) 27518-27525.

35. Y. Zeng, Y. Han, Y. Zhao, Y. Zeng, M. Yu, Y. Liu, H. Tang, Y. Tong, X. Lu, Adv. Energy Mater. 5 (2015) 1402176.

36. X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, Z. Tang, J. Mater. Chem. A 3 (2015) 20927-20934.

37. W. Chen, C. Xia, H. N. Alshareef, ACS Nano 8 (2014) 9531-9541.

38. W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Adv. Energy Mater. (2017) 1700983.

39. W. Fu, Y. Wang, W. Han, Z. Zhang, H. Zha, E. Xie, J. Mater. Chem. A 4 (2016) 173-182.

40. Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu, Y. Gong, J. Mater. Chem. A 4 (2016) 9977-9985.

41. S. E. Moosavifard, S. Fani, M. Rahmanian, Chem. Commun. 52 (2016) 4517-4520.

42. K. Qiu, M. Liu, Y. Luo, X. Du, J. Mater. Chem. A 5 (2017) 5820-5828.

43. S. Liu, S.C. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, J.H. Park, K.Y. Chung, S.C. Jun, J. Mater. Chem. A 5 (2017) 1043-1049.

44. J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao, J. Qiu, J. Mater. Chem. A 9 (2016) 1299-1307.

45. H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li, R. Che, Z. Lyu, J. Xiong, L. Yang, X. Wang, Z. Hu, Energy Environ. Sci. 9 (2016) 2053-2060.

46. C. Guan, W. Zhao, Y. Hu, Z. Lai, X. Li, S. Sun, H. Zhang, A.K. Cheetham, J. Wang, Nanoscale Horiz. 2 (2017) 99-105.

47. L. Gao, K. Cao, H. Zhang, P. Li, J. Song, J.U. Surjadi, Y. Li, D. Sun, Y. Lu, J. Mater. Chem. A 5 (2017) 16944-16952.

48. W. Guo, C. Yu, S. Li, J. Yang, Z. Liu, C. Zhao, H. Huang, M. Zhang, X. Han, Y. Niu, J. Qiu, Small (2017) 1701288.

49. A.M. Elshahawy, C. Guan, X. Li, H. Zhang, Y. Hu, H. Wu, S.J. Pennycook, J.

Wang, Nano Energy 39 (2017) 162-171.

- 50. B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Adv. Mater. 29 (2017) 1605051.
- 51. D. Xiong, X. Wang, W. Li, L. Liu, Chem. Commun. 52 (2016) 8711-8714.
- **52.** M. Chen, L. Shen, S. Chen, H. Wang, X. Chen, J. Wang, J. Mater. Chem. B 1 (2013) 2582-2589.
- **53.** A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9 (2009) 30-35.
- 54. F. Yao, F. Gunes, H. Q. Ta, S. M. Lee, S. J. Chae, K.Y. Sheem, C. S. Cojocaru, S. S. Xie, Y. H. Lee, J. Am. Chem. Soc. 134 (2012) 8646-8654.
- 55. S. Jin, N. Li, H. Cui, C. Wang, ACS Appl. Mater. Interfaces 6 (2014) 19397-19404.
- 56. M. Guo, J. Balamurugan, X. Li, N. H. Kim, J. H. Lee, Small 2017, 1701275.
- **57.** Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Adv. Funct. Mater. 27 (2017) 1606728.
- 58. J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, Nano Energy 21 (2016) 145-153.
- **59.** Q. Ke, C. Guan, X. Zhang, M. Zheng, Y. Zhang, W. Cai, H. Zhang, J. Wang, Adv. Mater. 29 (2017) 1604164.