Supplementary Information

Ga-doped SnO₂ mesoporous contact for UV stable highly efficient

perovskite solar cells

Bart Roose¹, Christian M. Johansen¹, Kevin Dupraz¹, Thomas Jaouen², Philipp Aebi², Ullrich Steiner¹, Antonio Abate^{1,3*}

¹Adolphe Merkle Institute, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland

²Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, CH-1700 Fribourg, Switzerland

³Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, 12489 Berlin, Germany

*Corresponding author: AA antonio.abate@helmholtz-berlin.de antoniobate83@gmail.com

Keywords: Perovskite solar cell; photovoltaics; Ga doping; solar energy; SnO₂; stability.

Contents

SI 1: Full XPS spectrum of Ga-doped SnO ₂	.3
SI 2: <i>J-V</i> parameters of Ga-doping optimization study (average of 5 devices)	.4
SI 3: Forward and backward scans of undoped (a) and 2.5% Ga-doped (b) m-SnO ₂ based PSCs <i>J-V</i> parameters are given in the table below	.5
SI 4: EQE of m-SnO ₂ and 2.5% Ga-doped SnO ₂ perovskite solar cells	.6
SI 5: J-V parameters of m-TiO ₂ based PSCs (average of 5 devices)	.7
SI 6: Optoelectronic analysis of undoped, 2.5% and 3.5% Ga-doped m-SnO ₂ devices	.8
SI 7: UV/Vis spectra of m-SnO ₂ deposited on FTO and m-TiO ₂ deposited on AZO	.9
SI 8: Normalized PCE of m-SnO ₂ and m-TiO ₂ as a function of time under full spectrum illumination (100 mW/cm ²)	0

SI 1: Full XPS spectrum of Ga-doped SnO₂

Full XPS spectrum of Ga-doped SnO₂, clearly showing the core levels of Ga, Sn and O.

Ga (%)	V_{oc} (mV)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
1.5	1008 ± 7	20.8 ± 0.6	62 ± 2	13.0 ± 0.4
2.0	997 ± 13	21.4 ± 0.4	62 ± 1	13.2 ± 0.4
2.5	1034 ± 16	21.5 ± 0.3	64 ± 1	14.2 ± 0.4
3.0	1024 ± 22	20.4 ± 0.9	63 ± 2	13.2 ± 0.8
3.5	1028 ± 21	20.6 ± 0.8	63 ± 1	13.4 ± 0.7

SI 2: *J-V* parameters of Ga-doping optimization study (average of 5 devices)

SI 3: Forward and backward scans of undoped (a) and 2.5% Ga-doped (b) m-SnO₂ based PSCs. *J-V* parameters are given in the table below.

Ga (%)	$V_{\rm oc}({\rm mV})$	$(J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	PCE (%)
0, reverse	997	22.0	57	12.5
0, forward	834	21.7	50	9.0
2.5, reverse	1070	22.8	70	17.0
2.5, forward	1003	21.5	56	12.0

SI 4: EQE of m-SnO₂ and 2.5% Ga-doped SnO₂ perovskite solar cells.

Integrated J_{sc} is calculated to be 19.4 mA/cm² and 19.9 mA/cm² for undoped and 2.5% Ga respectively. These values are in good agreement with the J_{sc} values extracted from J-V measurements.

ТСО	$V_{\rm oc}({ m V})$	$(J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	PCE (%)
FTO	1032 ± 10	22.6 ± 1.0	72 ± 1	16.8 ± 0.6
AZO	1032 ± 4	21.0 ± 0.5	71 ± 1	15.5 ± 0.2

SI 5: *J-V* parameters of m-TiO₂ based PSCs (average of 5 devices)

SI 6: Optoelectronic analysis of undoped, 2.5% and 3.5% Ga-doped m-SnO₂ devices

Optoelectronic analysis of undoped, 2.5% and 3.5% Ga-doped m-SnO₂ devices; a) Charge extracted at open circuit as a function of the voltage, b) Electron lifetime in solid-state DSSCs, as a function of open circuit voltage (V_{oc}), obtained through IMVS, d)Electron transport lifetimes in solid-state DSSCs as a function of the short circuit current (J_{sc}), obtained through IMPS. IMPS and IMVS data are well fit by a single exponential.

SI 7: UV/Vis spectra of m-SnO₂ deposited on FTO and m-TiO₂ deposited on AZO

SI 8: Normalized PCE of m-SnO₂ and m-TiO₂ as a function of time under full spectrum illumination (100 mW/cm²).

The devices were placed in a glovebox with N₂-atmosphere (\sim 500 ppm O₂) during the illumination and were removed from the glovebox to extract the normalised PCE. After \sim 1000 hours of illumination, devices were stored in the dark and measured again after 200 hours.

