Supporting Information

Salt-templated porous carbon-carbon composite electrodes for application in vanadium redox flow batteries

Maike Schnucklake^a, Sophie Kuecken^b, Abdulmonem Fetyan^a, Johannes Schmidt^b, Arne Thomas^b, Christina Roth^{a*}

^aInstitute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany.

- S1. Pore size distribution
- S2. X-ray diffraction analysis
- S3. Energy-dispersive X-ray spectroscopy
- S4. TGA measurement

S1. Pore size distribution

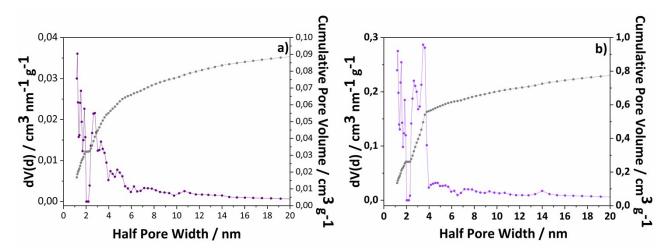


Figure S 1: Pore size distributions of the composite electrode (a) and the bulk material (b).

^bInstitute of Chemistry, Technische Universität Berlin, Hardenbergstr. 40, D-10623 Berlin, Germany.

S2. X-ray diffraction analysis

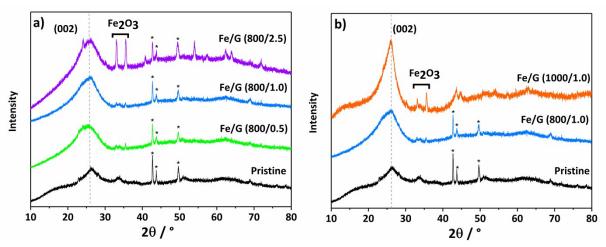


Figure S 2: X-ray diffraction patterns for carbon felts a) graphitized at 800 °C with different weight percentages of catalytic iron and b) graphitized at different temperatures. Reflections marked with a star are assigned to a damaged scatter and do not belong to the carbon material.

The pristine and the treated carbon felts exhibit a characteristic reflection at 2θ = 25.5°, corresponding to the C(002) reflection, attributed to the interlayer stacking of graphitic planes. A temperature of 800 °C is not high enough to initiate significant graphitization, as indicated by the not distinctive and rather broad reflection. However, with higher iron content the C(002) reflection increases slightly in intensity (Figure S 2a). Additional reflections at 2θ = 33.2° and 35.6° can be attributed to residual iron oxide (Fe₂O₃) in the felts still present after washing, when higher weight percentages of iron were used. Remaining iron oxide is also recognized as a shoulder at the (002) reflections. From Figure S 2b it can be seen that for graphitizing temperatures of 1000 °C the relative intensity of the C(002) reflection increases visibly while the reflection width decreases.

S3. Energy-dispersive X-ray spectroscopy

Table S1: Elemental composition of the composite electrode based on Energy-dispersive X-ray spectroscopy.

Element	Atom
	percentage
С	89.6
N	4.5
0	3.2
Na	0.4
Cl	1.3
Zn	0.8

S4. TGA measurement

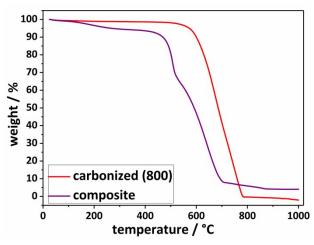


Figure S 3: TGA measurements of the composite electrode and the carbonized felt.