Supporting Information

High Performance Red Phosphorus/Carbon Nanofibers/Graphene Free-standing Paper Anode for Sodium Ion Batteries

Xiaoxin Ma,^a Long Chen,^a Xiaohua Ren,^a Guangmei Hou,^a Lina Chen,^a Le Zhang,^a Beibei Liu,^a Qing Ai,^a Lin Zhang,^a Pengchao Si,^a Jun Lou,^{ab} Jinkui Feng,^a Lijie Ci*^a

a. SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
b. Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005, USA

*Corresponding author: Lijie Ci Email: lci@sdu.edu.cn TEL:86-531-88396169

Figure S1. SEM image of (a) & (b) as-synthesized electrospun CFs.

Figure S2. SEM image of (a) & (b) P/CFs composite.

Figure S3. (a) High resolution SEM image of P/CFs composite. EDS elemental mapping of (b) carbon, and (c) phosphorus.

Figure S4. Cyclic voltammograms for the first three cycles of (a) CFs, (b) pure red P, and (c) the P/CFs electrode.

Figure S5. Galvanostatic charge-discharge profiles of the first two cycles for (a) CFs, (b) pure red P, and (c) the P/CFs electrode at the current density of 50 mA g^{-1}

Figure S6. SEM image of the P/CFs electrode after first discharge process under 50 mA g⁻¹.

Figure S7. (a) Coulombic efficiency of the CFs, red P and P/CFs@RGO, (b) Rate capability of the P/CFs electrode.

Figure S8. Cycling performance of P/CFs@RGO and CFs@RGO, the specific capacity of the P/CFs@RGO is based on the mass of P.

Figure S9. Cycling performance of P/CFs@RGO composites at (a) 200 mA g^{-1} and (b) 1000 mA g^{-1} .

	Reversible capacity (mAh g ⁻¹)	Retention	
P/CNT	500 at 20 th cycle (60 mA g ⁻¹)	28%	Ref 23
a-P/C	$1200^{P} \text{ at } 60^{th} \text{ cycle}(250 \text{mA g}_{p}^{-1})$	68%	Ref 24
aP/c-BN/pGra	947 ^P at 100 th cycle (50mA g_p^{-1})	78.2%	Ref 46
P/C- C-1	187 at 50 th cycle (100mA g ⁻¹)	14.1%	Ref 13
C/P/GA	1867^{P} at 100^{th} cycle (0.1C mA g _p ⁻¹)	89.5%	Ref 29
Red P / N-doped carbon	731 at 55 th cycle (100mA g ⁻¹)	57.3%	Ref 26
P/CFs/RGO	725.9 at 55 th cycle (50mA g ⁻¹)	75.7%	This
			work

Table S1. Comparison of electrochemical performance between the P/CFs@RGO and other previous works about P/C composite as anode materials in SIB. The subscript and superscript P in table represent that the current densities and capacities are calculated based on the mass of P.

Figure S10. SEM image (a), (b) & (c) of P/CFs@RGO electrode after 50 cycles under 50 mA g^{-1} , high magnitude TEM images (d) , (e) & (c) of P/CFs@RGO electrode after 50 cycles under 50 mA g^{-1} .

Figure S11. High resolution SEM image of P/CFs@RGO electrode after 50 cycles under 50 mA g⁻¹, EDS elemental mapping of Na, P, C, O, N.

$$C_P = \frac{C_{P/CFs@RGO} - C_{CFs@RGO} * W_{CFs@RGO}}{W_P}$$

 $\begin{array}{ll} C_{p;} & Capacity \ contribution \ of \ phosphorus \ in \ P/CFs@RGO. \\ C_{p/CFs@RGO;} & Capacity \ of \ the \ P/CFs@RGO \ composite. \\ C_{CFs@RGO;} & Capacity \ of \ CFs@RGO \ composite. \\ W_{p;} & Weight \ ratio \ of \ phosphorus \ in \ P/CFs@RGO. \end{array}$

Table S2. Calculation formula for capacity normalization.