Supporting Information

Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide

nanoparticles

Yu-Hsien Chiang,^a Ching-Kuei Shih, ^a Ang-Syuan Sie,^a Ming-Hsien Li,^a Chieh-Chung Peng, ^a Po-Shen Shen,^a Yu-Po Wang, ^a Tzung-Fang Guo,^a and Peter Chen^{*a, b, c}

^a Department of Photonics, National Cheng Kung University, No.1, University Road Tainan 701, Taiwan ^bResearch Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan

^c Center for Micro/Nano Science and Technology, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan

Fig. S1. The X-ray photoemission spectra for 5% IZO powders with full survey scan for binding energy 0-1100 eV.

Fig. S2. The ultraviolet photoelectron spectroscopy (UPS) measurement for 5% IZO coated on FTO substrate to measure work function and valence band (inset).

Fig. S3. The transmittance spectra of sputtered NiOx film, sputtered NiOx film + mesoporous NiO layer and mesoporous TiO_2 layer. (We used FTO substrate as baseline.)

Fig. S4. The top-view SEM image for triple-cation perovskite coated on mesoporous NiO layer/NiO $_x$ thin.

Fig. S5. The XRD pattern of triple-cation perovskite coated on mesoporous NiO layer/NiO_x thin.

Fig. S6. The statistical data for 6.5 % IZO-based perovskite solar cells.

Figure S7. The J-V curve measurement based on different doping ratio of IZO device performance.

Table S1. The summarized J-V data for different doping ratio of IZO device performance.

-				
	V _{oc}	J _{sc}	FF	РСЕ
	(V)	(mA/cm^2)	(%)	(%)
ZnO	1.01	21.36	56.25	12.01
5% IZO	0.987	22.35	69.96	15.43
6.5 % IZO	1.02	22.86	69.43	16.20
8% IZO	0.92	19.15	15.17	2.67%

Fig. S8. The hysteresis effect on one of IZO-based perovskite solar cells with J-V curve for forward scan and reverse scan.

Fig. S9. The J-V curve for C₆₀-based perovskite solar cells with different scan direction from J_{sc} to V_{oc} (forward scan) and from V_{oc} to J_{sc} (reverse scan).

Fig. S10. The stability test with all inorganic interfaces device without encapsulation storage under ambient environment with relative humidity of $25 \pm 5\%$ for several days.

Fig. S11. The electroluminescence photo for IZO-based perovskite solar cell under forward bias in the dark.