Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Porous Octahedral PdCu Nanocages as High Efficient Electrocatalysts for Methanol Oxidation Reaction

Jiali Sheng,^{a, b} Jiahui Kang,^a Huangqing Ye,^a Jinqi Xie,^a Bo Zhao,^a Xian-Zhu Fu,^{a,c*} Yan Yu,^{b*} Rong Sun,^{a*} Ching-Ping Wong^{d, e}

^aShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

^bInstitute of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, China.

^cCollege of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

^dDepartment of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong, China.

^eSchool of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.

Corresponding author:

- * Xian-Zhu Fu, E-mail address: xz.fu@szu.edu.cn;
- * Yan Yu, E-mail address: <u>yanyumse@ustc.edu.cn</u>

* Rong Sun, E-mail address: rong.sun@siat.ac.cn.

Tel: +86-755-86392151; Fax: +86-755-86392299

Figure S1 SEM image of PdCu-5 nanocages without PVP

Figure S2 a-c) SEM images and d-f) TEM images of Cu₂O octahedral precursors

Figure S3 TEM images of Cu₂O@PdCu structures

Figure S4 TEM image of the shell structures of PdCu-5 nanocages.

Method	Pd : Cu mass ratio				
	Pd_1Cu_1	Pd ₁ Cu ₃	Pd ₁ Cu ₅	Pd ₁ Cu ₇	Pd ₁ Cu ₉
ICP	89:11	82:18	80:20	79:21	73:27
EDS	85:15	82:18	81:19	79:21	69:21

 Table S1 Compositions of as-prepared nanocages determined by ICP, EDS.

Figure S5 a) SEM and b-c) TEM images of PdCu-1 nanocages. d) SEM and e-f) TEM images of PdCu-3 nanocages

Figure S6 SEM images of a) PdCu-7 nanocages and b) PdCu-9 nanocages. c) Corresponding TEM image of PdCu-7 nanocages.

Figure S7 The ECSA normalized CVs of as-prepared nanocages and commercial Pd/C modified GCE in N_2 -saturated 1.0 M KOH + 1.0 M CH₃OH solution at a scan rate of 50 mV s⁻¹.

Figure S8 a) HRTEM images of a) the shell structures of PdCu-5 nanocages and b) the shell structures of PdCu-1 nanocages.

As shown in Figure S8, it can be found that the PdCu-5 nanocages show more obvious voids in the shell structure than the PdCu-1 nanocages, indicating that the PdCu-5 nanocages possess higher porosity than the PdCu-1 nanocages.

Figure S9 TEM images of etched PdCu-5 nanocages (denoted as PdCu-5-E) with different magnifications.

Figure S10 Comparison CV curves of the PdCu-5 nanocages and PdCu-5-E nanocages in N₂-saturated 1.0 M KOH solution at a scan rate of 50 mV s⁻¹. b) Pd mass and c) the ECSA normalized CVs of PdCu-5 nanocages and PdCu-5-E nanocages modified GCEs in N₂-saturated 1 M KOH+ 1 M CH₃OH solution at a scan rate of 50 mV s⁻¹.

Figure S11 ECSA normalized i–t curves of the PdCu-5 nanocages, and commercial Pd/C in N_2 -saturated 1.0 M KOH + 1.0 M CH₃OH solution.

Figure S12 a) TEM images of PdCu-5 nanocages after CV test of 200 cycles