Electronic Supplementary Information (ESI) for

Organic polythiophene coated aromatic polyimide composite

cathodes for ultrafast and sustainable lithium ion batteries†

Hailong Lyu,^{ab} Jiurong Liu,^{a*} Shannon Mahurin,^b Sheng Dai,^{bc} Zhanhu Guo,^d and Xiao-Guang

Sun^{b*}

- ^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- ^b Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA.

^c Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA

^d Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA

*Corresponding authors. E-mail: jrliu@sdu.edu.cn (J. L.); sunx@ornl.gov (X. S.). Tel.: +86-531-88390236 (J. L.); 865-241-8822 (X. S.).

Fig. S1. N₂ adsorption-desorption isotherms of PI, PI10PT, PI30PT, PI50PT and PT.

Fig. S2. CV profiles of the first five cycles for pure PT at a scan rate of 0.05 mV s⁻¹.

Fig. S3. CV profiles of (a) PI, (b) PI10PT, (c) PI30PT and (d) PI50PT at various scan rates from 0.05 to 2.0 mV s⁻¹; (e) relationships between the peak current (I_p) and the square root of scan rate ($v^{1/2}$) in oxidation and reduction processes for PI, PI10PT, PI30PT and PI50PT

Fig. S4. Charge–discharge capacities and coulombic efficiencies of the half-cells based on pure PT at (a) different rates and (b) a current rate of C/2.

PI composites	Conductive additive and content	Theoretical capacity (mAh g ⁻¹)	Specific capacity (mAh g ⁻¹)	High-rate capacity (mAh g ⁻¹)	Capacity Retention (Cycles and rate)
PI-51	None	405.8	222 at C/20	183 at C/2	>90% (100 at C/2)
PI-FGS-b ²	11 wt% functionalized graphene sheets (FGSs)	366.8	205 at C/10	~50 at 20C	N/A
PI/CNT ³	15 wt% carbon nanotube (CNTs)	273	125 at C/10	115 at 2C	93% (300 at C/2.73)
3D-RGO/PI ⁴	20 wt% three-dimensional reduced graphene oxide (3D-RGO)	442.7	175 at C/10	>40 at 5C	82% (150 at C/2)
PI/SWNT ⁵	~30 wt% single-wall carbon nanotubes (SWNTs)	442.7	226 at C/10	120 at 20C	85% (200 at C/2)
PMTA/SWC NT ⁶	35 wt% single-wall carbon nanotubes (SWCNTs)	383	160 at C/10	74 at 10C	87% (200 at C/2)
PMAQ– SWNT ⁷	30 wt% single-wall carbon nanotubes (SWNTs)	191	190 at C/10	120 at 20C	91.5% (300 at C/2)
PI-FLEG ⁸	10 wt% few layers exfoliated graphene (FLEG)	442.7	177 at C/10	38 at 5C	80% (200 at C/2)
GF-PI ⁹	12 wt% 3D reduced graphene oxide (GF)	366.8	240 at C/9.2	100 at 10.9C	81% (600 at C/3.7)
PI30PT (this work)	30 wt% polythiophene (PT)	405.8	217 at C/10	90 at 20C	94% (1000 at 20C)

Table. S1. Electrochemical properties of PI composite electrodes

Reference

- 1. Z. Song, H. Zhan and Y. Zhou, *Angew Chem Int Ed.*, 2010, **49**, 8444-8448.
- 2. Z. Song, T. Xu, M. L. Gordin, Y. B. Jiang, I. T. Bae, Q. Xiao, H. Zhan, J. Liu and D. Wang, *Nano Lett.*, 2012, **12**, 2205-2211.
- 3. H. Wu, K. Wang, Y. Meng, K. Lu and Z. Wei, J. Mater. Chem. A, 2013, 1, 6366-6372.

- 4. Y. Meng, H. Wu, Y. Zhang and Z. Wei, J. Mater. Chem. A, 2014, 2, 10842.
- 5. H. Wu, S. A. Shevlin, Q. Meng, W. Guo, Y. Meng, K. Lu, Z. Wei and Z. Guo, *Adv. Mater.*, 2014, **26**, 3338-3343.
- 6. H. Wu, Q. Meng, Q. Yang, M. Zhang, K. Lu and Z. Wei, *Adv. Mater.*, 2015, **27**, 6504-6510.
- 7. H. P. Wu, Q. Yang, Q. H. Meng, A. Ahmad, M. Zhang, L. Y. Zhu, Y. G. Liu and Z. X. Wei, *J. Mater. Chem. A*, 2016, **4**, 2115-2121.
- 8. A. Ahmad, H. Wu, Y. Guo, Q. Meng, Y. Meng, K. Lu, L. Liu and Z. Wei, *RSC Adv.*, 2016, **6**, 33287-33294.
- 9. Y. Huang, K. Li, J. Liu, X. Zhong, X. Duan, I. Shakir and Y. Xu, *J. Mater. Chem. A*, 2017, **5**, 2710-2716.