Fiber-Based All-Solid-State Asymmetric Supercapacitor Based on Co₃O₄@MnO₂ Core/Shell Nanowire Array

Xiaoying Niu,^a Guoyin Zhu,^b Zhihui Yin,^a Ziyang Dai,^a Xiaocheng Hou,^a Jinjun Shao,^{*a} Wei Huang,^a

Yizhou Zhang,*a and Xiaochen Dong*a

Supplementary experimental section

The synthesis of MnO₂ on Ni wire

High purity Ni wire was immersed in 6 M HCl solution in an ultrasound bath for 20 min to remove the NiO layer on the surface, and then cleaned with deionized water. The Ni wire was immersed into 0.1 M aqueous glucose solution for 24 h, followed by carbonization at 400 °C in N₂ gas for 100 min. After carbonization, the sample was put into a 25 mL Teflon-lined stainless steel autoclave containing a 0.03 M KMnO₄ solution, which was subsequently maintained at 160 °C for 5 h. Finally, the Ni wire covered with MnO₂ nanosheets was rinsed with deionized water, and dried at 60 °C for one night. Then, the MnO₂ nanosheets were scraped off the Ni wire.

Supplementary Figures

Fig. S1. (a) CV curves of the Ni wire/Co₃O₄@MnO₂ nanowire array electrode tested in a three electrode configuration at various scan rates in 6 M KOH aqueous electrolyte. (b) GCD curves of the Ni wire/Co₃O₄@MnO₂ nanowire array electrode at different current density.

Fig. S2. (a, b) SEM images of the $Co_3O_4@MnO_2/Ni$ wire electrode before and after 1000 galvanostatic charge-discharge cycling.

Fig. S3. CV curves of the fiber-based supercapacitor device under different bending angles.

Samples	Current density	Specific capacitance	Power density	Energy density	Ref.
	(mA/cm ²)	(mF/cm ²)	(µW/cm²)	(µWh/cm ²)	
Co ₃ O ₄ @MnO ₂ /Ni	0.10	13.90	750	4.34	This work
CNF/MW	0.10	12.50	64	1.74	S 1
CNT/RGO composite fiber	0.05	27.36	250	3.80	S2
MnO ₂ /carbon fiber	0.26	10.45	117.56	3.26	S3
CF/MnO ₂ // CF/MoO ₃	0.50	4.86	530	2.70	S4
CNT/MnO ₂ polymer fiber	0.42	40.90	66.90	2.60	S5
PEDOT@D-TiO ₂ /Ti	1.27	2.65	230.43	0.44	S6

 Table S1. Comparison of the present and previously reported solid state fiber-based supercapacitors.

References

- S1. G. Zhu, J. Chen, Z. Zhang, Q. Kang, X. Feng, Y. Li, Z. Huang, L. Wang and Y. Ma, *Chem. Commun.*, 2016, **52**, 2721.
- S2. B. Wang, X. Fang, H. Sun, S. He, J. Ren, Y. Zhang and H. Peng, *Adv. Mater.*, 2015, 27, 7854-7860.
- S3. N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Y. Tang and M. Q. Zhu, *Adv. Energy Mater.*, 2016, 6, 1501458.
- S4. J. Noh, C.-M. Yoon, Y. K. Kim and J. Jang, Carbon, 2017, 116, 470-478.
- S5. C. Choi, S. H. Kim, H. J. Sim, J. A. Lee, A. Y. Choi, Y. T. Kim, X. Lepro, G. M. Spinks,
 R. H. Baughman and S. J. Kim, *Sci. Rep.*, 2015, 5, 9387.
- S6. R. Vellacheri, H. P. Zhao, M. Muhlstadt, A. Al-Haddad, K. D. Jandt and Y. Lei, *Adv. Funct. Mater.*, 2017, 27, 1606696.