Supporting Information for

Expanded biomass-derived hard carbon with ultra-stable performance for sodium-ion batteries

Ziyi Zhu,^a Feng Liang^a Zhongren Zhou,^a Xiaoyuan Zeng,^a Ding Wang,^a Peng Dong,^a Jinbao Zhao^b, Shigang Sun^b, Yingjie Zhang^{*a} and Xue Li^{*a}

a National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Fabrication Technology, Yunnan Provincial Laboratory for Advanced Materials and Batteries Application, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China

b State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China

Fig. S1 (a) TGA analysis of CP; (b) FTIR analysis of CP.

Fig. S2 (a) XPS spectra of CP specimens; (b) High-resolution C 1s XPS spectra of CP; (c) High-resolution O 1s XPS spectra of CP.

Fig. S3 (a) Galvanostatic charge/discharge cycling profiles at different current rates; (b) Galvanostatic charge/discharge cycling profiles at the high current density of 500 mA g^{-1} .

Fig. S4 SEM image of the CP electrode after 100 cycles at the current density of 20 mA g^{-1} .

Fig. S5 (a) O1s XPS spectra for the CP electrodes tests after the first cycle and the pristine electrode; (b) F 1s XPS spectra for the CP electrodes tests under different cut-off voltages.

Sample	Element analysis (at%)								
	С	0	N	Al	Cl	Ca	К	Р	Mg
СР	85.8	12.0	1.4	0.4	0.2	0.1	<0.1	<0.1	<0.1

Table S1Element ratio on the surface of CP

Table S2 A comparison with literatures of the reversible capacities for carbon materials, testedin standard half-cell configuration vs. Na.

Sample	Initial	Rate performance	Cyclability
--------	---------	------------------	-------------

	coulombic		
	efficiency		
	(%)		
Cherry petals	67.3	300.2 mA h g ⁻¹ at 20 mA g ⁻¹	298.1 mA h g ⁻¹ at 100th cycle and 20 mA g ⁻¹
		273.1 mA h g ⁻¹ at 50 mA g ⁻¹	(99.3% capacity retention),
		236.5 mA h g ⁻¹ at 100 mA g ⁻¹	131.5 mA h g ⁻¹ at 500th cycle and 500 mA g ⁻
		146.5 mA h g ⁻¹ at 500 mA g ⁻¹	1
		91.9 mA h g ⁻¹ at 1000 mA g ⁻¹	(89.8% capacity retention)
Carbon		233 mA h g ^{-1} at 50 mA g ^{-1}	217 mA h g ⁻¹ at 50th cycle and 50 mA g ⁻¹ ,
nanofiber	58.2	173 mA h g ⁻¹ at 200 mA g ⁻¹	169 mA h g ⁻¹ at 200th cycle and 200 mA g ⁻¹
(ref 44)		82 mA h g ⁻¹ at 2000 mA g ⁻¹	(97.7% capacity retention)
Hollow carbon		251 mA h g ⁻¹ at 50 mA g ⁻¹	206.3 mA h g ⁻¹ at 400th cycle and 50 mA g ⁻¹
nanowire	50.5	149 mA h g ⁻¹ at 500 mA g ⁻¹	(82.2% capacity retention)
(ref 25)			(r
Expanded		284 mA h g ⁻¹ at 20 mA g ⁻¹	184 mA h g ⁻¹ at 2000th cycle and 100 mA g ⁻¹
graphite	49.53	91 mA h g ⁻¹ at 200 mA g ⁻¹	(73.92% capacity retention)
(ref 27)			
Highly		221 m A h == st 100 m A ==	225 mA h of 1804h mode and 100 mA
carbon	57.6	231 mA n g ⁻¹ at 100 mA g ⁻¹	225 mA n g^{-1} at 180th cycle and 100 mA g^{-1}
(ref 45)		40 mA h g ⁻¹ at 5000 mA g ⁻¹	(92% capacity retention)
Diamage derived			
hierarchical		226 mA h g ⁻¹ at 100 mA g ⁻¹	144 mA h σ^{-1} at 200th cycle and 500 mA σ^{-1}
porous carbons	33.8	47 mA h σ^{-1} at 10000 mA σ^{-1}	(~86% capacity retention)
(ref 21)		+/ mixing at 10000 mixig	
Pitch-derived			
amorphous	00	284 mA h α^{-1} at 20 mA α^{-1}	~99.2% capacity retention after 100th cycles
carbon	88	264 mA n g ⁺ at 50 mA g ⁺	at 30 mA g ⁻¹
(ref 46)			
Sucrose-based	not reported	307 mA h g ⁻¹ at 20 mA g ⁻¹	288 mA h g ⁻¹ at 100th cycle and 20 mA g ⁻¹
hard carbon			

(ref 43)		95 mA h g ⁻¹ at 500 mA g ⁻¹	
Graphene template carbon (ref 47)	43.1	192 mA h g ⁻¹ at 200 mA g ⁻¹ 45 mA h g ⁻¹ at 10000 mA g ⁻¹	190 mA h g ⁻¹ at 2000th cycle and 200 mA g ⁻¹ (92% capacity retention)
Carbon nanofibrous webs (ref 48)	70.5	292.6 mA h g ⁻¹ at 20 mA g ⁻¹ 210 mA h g ⁻¹ at 400 mA g ⁻¹ 80 mA h g ⁻¹ at 1000 mA g ⁻¹	247 mA h g ⁻¹ at 200th cycle and 100 mA g ⁻¹ (90.2% capacity retention)
Reduced graphene oxide (ref 49)	not reported	271.2 mA h g ⁻¹ at 40 mA g ⁻¹ 150.9 mA h g ⁻¹ at 200 mA g ⁻¹ 95.6 mA h g ⁻¹ at 1000 mA g ⁻¹	93.3 mA h g ⁻¹ at 250th cycle and 400 mA g ⁻¹ , 141 mA h g ⁻¹ at 1000th cycle and 40 mA g ⁻¹ (45% capacity retention)
Hard carbon (ref 42)	83	~220 mA h g ⁻¹ at 20 mA g ⁻¹ ~50 mA h g ⁻¹ at 500 mA g ⁻¹	~213 mA h g ⁻¹ at 300th cycle and 20 mA g ⁻¹
Carbon nanospheres (ref 50)	41.5	~200 mA h g ⁻¹ at 50 mA g ⁻¹ ~137 mA h g ⁻¹ at 100 mA g ⁻¹ ~50 mA h g ⁻¹ at 10000 mA g ⁻¹	$\sim 160 \text{ mA h g}^{-1}$ at 100th cycle and 50 mA g $^{-1}$
N-doped interconnected carbon nanofibers (ref 51)	41.8	87 mA h g ⁻¹ at 10000 mA g ⁻¹ 37 mA h g ⁻¹ at 20000 mA g ⁻¹	134.2 mA h g ⁻¹ at 200th cycle and 200 mA g ⁻¹ 1 (88.7% capacity retention)
Sulfur covalently bonded graphene (ref 52)	57.36	291 mA h g ⁻¹ at 50 mA g ⁻¹ 262 mA h g ⁻¹ at 100 mA g ⁻¹ 161 mA h g ⁻¹ at 1000 mA g ⁻¹	127 mA h g ⁻¹ at 200th cycle and 2000 mA g ⁻¹ , ¹ , 83 mA h g ⁻¹ at 200th cycle and 5000 mA g ⁻¹ (~30% capacity retention)
Rape seed shuck derived-lamellar hard carbon (ref 19)	not reported	196 mA h g ⁻¹ at 25 mA g ⁻¹ 92 mA h g ⁻¹ at 500 mA g ⁻¹ 32 mA h g ⁻¹ at 5000 mA g ⁻¹	143 mA h g ⁻¹ at 200th cycle and 100 mA g ⁻¹
Graphene	not reported	220 mA h g^{-1} at 30 mA g^{-1}	~80% capacity retention after 300th cycles at

nanosheets		202 mA h g ⁻¹ at 50 mA g ⁻¹	100 mA g ⁻¹
(ref 53)		189 mA h g ⁻¹ at 100 mA g ⁻¹	
		159 mA h g ⁻¹ at 500 mA g ⁻¹	
		146 mA h g ⁻¹ at 1000 mA g ⁻¹	
		105 mA h g ⁻¹ at 5000 mA g ⁻¹	
		73 mA h g ⁻¹ at 10000 mA g ⁻¹	
		46 mA h g ⁻¹ at 20000 mA g ⁻¹	
		287.8 mA h g ⁻¹ at 50 mA g ⁻¹	
Biomass derived hard carbon	27	182.3 mA h g ⁻¹ at 200 mA g ⁻¹	181 mA h g ⁻¹ at 220th cycle and 200 mA g ⁻¹
		151.2 mA h g ⁻¹ at 500 mA g ⁻¹	(84.6% capacity retention)
		71 mA h g ⁻¹ at 5000 mA g ⁻¹	
Carbon	not roport- J	175 mA h g ⁻¹ at 50 mA g ⁻¹	>120 mA h g ⁻¹ at 30th cycle and 100 mA g ⁻¹
(ref 54)	not reported	25 mA h g ⁻¹ at 5000 mA g ⁻¹	>60 mA h g ⁻¹ at 30th cycle and 200 mA g ⁻¹

Table S3Impedance parameters of CP electrodes.

Sample	$R_{s}\left(\Omega ight)$	Error%	$R_{ct}+R_{SEI}(\Omega)$	Error%
Before test	11.6	1.29	82.3	1.61
After 10th	23.1	1.04	138.7	0.73
After 100th	38.5	0.83	261.4	0.45
After 200th	45.1	0.54	283.5	0.41