

Supporting Information for

Expanded biomass-derived hard carbon with ultra-stable performance for sodium-ion batteries

Ziyi Zhu,^a Feng Liang^a Zhongren Zhou,^a Xiaoyuan Zeng,^a Ding Wang,^a Peng Dong,^a Jinbao Zhao^b, Shigang Sun^b, Yingjie Zhang^{*a} and Xue Li^{*a}

a National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Fabrication Technology, Yunnan Provincial Laboratory for Advanced Materials and Batteries Application, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China

b State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China

Fig. S1 (a) TGA analysis of CP; (b) FTIR analysis of CP.

Fig. S2 (a) XPS spectra of CP specimens; (b) High-resolution C 1s XPS spectra of CP; (c) High-resolution O 1s XPS spectra of CP.

Fig. S3 (a) Galvanostatic charge/discharge cycling profiles at different current rates; (b) Galvanostatic charge/discharge cycling profiles at the high current density of 500 mA g⁻¹.

Fig. S4 SEM image of the CP electrode after 100 cycles at the current density of 20 mA g^{-1} .

Fig. S5 (a) O 1s XPS spectra for the CP electrode tests after the first cycle and the pristine electrode; (b) F 1s XPS spectra for the CP electrode tests under different cut-off voltages.

Table S1 Element ratio on the surface of CP

Sample	Element analysis (at%)								
	C	O	N	Al	Cl	Ca	K	P	Mg
CP	85.8	12.0	1.4	0.4	0.2	0.1	<0.1	<0.1	<0.1

Table S2 A comparison with literatures of the reversible capacities for carbon materials, tested in standard half-cell configuration vs. Na.

Sample	Initial	Rate performance	Cyclability

	coulombic efficiency (%)		
Cherry petals (This work)	67.3	300.2 mA h g ⁻¹ at 20 mA g ⁻¹ 273.1 mA h g ⁻¹ at 50 mA g ⁻¹ 236.5 mA h g ⁻¹ at 100 mA g ⁻¹ 146.5 mA h g ⁻¹ at 500 mA g ⁻¹ 91.9 mA h g ⁻¹ at 1000 mA g ⁻¹	298.1 mA h g ⁻¹ at 100th cycle and 20 mA g ⁻¹ (99.3% capacity retention), 131.5 mA h g ⁻¹ at 500th cycle and 500 mA g ⁻¹ (89.8% capacity retention)
Carbon nanofiber (ref 44)	58.2	233 mA h g ⁻¹ at 50 mA g ⁻¹ 173 mA h g ⁻¹ at 200 mA g ⁻¹ 82 mA h g ⁻¹ at 2000 mA g ⁻¹	217 mA h g ⁻¹ at 50th cycle and 50 mA g ⁻¹ , 169 mA h g ⁻¹ at 200th cycle and 200 mA g ⁻¹ (97.7% capacity retention)
Hollow carbon nanowire (ref 25)	50.5	251 mA h g ⁻¹ at 50 mA g ⁻¹ 149 mA h g ⁻¹ at 500 mA g ⁻¹	206.3 mA h g ⁻¹ at 400th cycle and 50 mA g ⁻¹ (82.2% capacity retention)
Expanded graphite (ref 27)	49.53	284 mA h g ⁻¹ at 20 mA g ⁻¹ 91 mA h g ⁻¹ at 200 mA g ⁻¹	184 mA h g ⁻¹ at 2000th cycle and 100 mA g ⁻¹ (73.92% capacity retention)
Highly disordered carbon (ref 45)	57.6	231 mA h g ⁻¹ at 100 mA g ⁻¹ 40 mA h g ⁻¹ at 5000 mA g ⁻¹	225 mA h g ⁻¹ at 180th cycle and 100 mA g ⁻¹ (92% capacity retention)
Biomass derived hierarchical porous carbons (ref 21)	33.8	226 mA h g ⁻¹ at 100 mA g ⁻¹ 47 mA h g ⁻¹ at 10000 mA g ⁻¹	144 mA h g ⁻¹ at 200th cycle and 500 mA g ⁻¹ (~86% capacity retention)
Pitch-derived amorphous carbon (ref 46)	88	284 mA h g ⁻¹ at 30 mA g ⁻¹	~99.2% capacity retention after 100th cycles at 30 mA g ⁻¹
Sucrose-based hard carbon	not reported	307 mA h g ⁻¹ at 20 mA g ⁻¹	288 mA h g ⁻¹ at 100th cycle and 20 mA g ⁻¹

(ref 43)		95 mA h g ⁻¹ at 500 mA g ⁻¹	
Graphene template carbon (ref 47)	43.1	192 mA h g ⁻¹ at 200 mA g ⁻¹ 45 mA h g ⁻¹ at 10000 mA g ⁻¹	190 mA h g ⁻¹ at 2000th cycle and 200 mA g ⁻¹ (92% capacity retention)
Carbon nanofibrous webs (ref 48)	70.5	292.6 mA h g ⁻¹ at 20 mA g ⁻¹ 210 mA h g ⁻¹ at 400 mA g ⁻¹ 80 mA h g ⁻¹ at 1000 mA g ⁻¹	247 mA h g ⁻¹ at 200th cycle and 100 mA g ⁻¹ (90.2% capacity retention)
Reduced graphene oxide (ref 49)	not reported	271.2 mA h g ⁻¹ at 40 mA g ⁻¹ 150.9 mA h g ⁻¹ at 200 mA g ⁻¹ 95.6 mA h g ⁻¹ at 1000 mA g ⁻¹	93.3 mA h g ⁻¹ at 250th cycle and 400 mA g ⁻¹ , 141 mA h g ⁻¹ at 1000th cycle and 40 mA g ⁻¹ (45% capacity retention)
Hard carbon (ref 42)	83	~220 mA h g ⁻¹ at 20 mA g ⁻¹ ~50 mA h g ⁻¹ at 500 mA g ⁻¹	~213 mA h g ⁻¹ at 300th cycle and 20 mA g ⁻¹
Carbon nanospheres (ref 50)	41.5	~200 mA h g ⁻¹ at 50 mA g ⁻¹ ~137 mA h g ⁻¹ at 100 mA g ⁻¹ ~50 mA h g ⁻¹ at 10000 mA g ⁻¹	~160 mA h g ⁻¹ at 100th cycle and 50 mA g ⁻¹
N-doped interconnected carbon nanofibers (ref 51)	41.8	87 mA h g ⁻¹ at 10000 mA g ⁻¹ 37 mA h g ⁻¹ at 20000 mA g ⁻¹	134.2 mA h g ⁻¹ at 200th cycle and 200 mA g ⁻¹ (88.7% capacity retention)
Sulfur covalently bonded graphene (ref 52)	57.36	291 mA h g ⁻¹ at 50 mA g ⁻¹ 262 mA h g ⁻¹ at 100 mA g ⁻¹ 161 mA h g ⁻¹ at 1000 mA g ⁻¹	127 mA h g ⁻¹ at 200th cycle and 2000 mA g ⁻¹ , 83 mA h g ⁻¹ at 200th cycle and 5000 mA g ⁻¹ (~30% capacity retention)
Rape seed shuck derived-lamellar hard carbon (ref 19)	not reported	196 mA h g ⁻¹ at 25 mA g ⁻¹ 92 mA h g ⁻¹ at 500 mA g ⁻¹ 32 mA h g ⁻¹ at 5000 mA g ⁻¹	143 mA h g ⁻¹ at 200th cycle and 100 mA g ⁻¹
Graphene	not reported	220 mA h g ⁻¹ at 30 mA g ⁻¹	~80% capacity retention after 300th cycles at

nanosheets (ref 53)		202 mA h g ⁻¹ at 50 mA g ⁻¹ 189 mA h g ⁻¹ at 100 mA g ⁻¹ 159 mA h g ⁻¹ at 500 mA g ⁻¹ 146 mA h g ⁻¹ at 1000 mA g ⁻¹ 105 mA h g ⁻¹ at 5000 mA g ⁻¹ 73 mA h g ⁻¹ at 10000 mA g ⁻¹ 46 mA h g ⁻¹ at 20000 mA g ⁻¹	100 mA g ⁻¹
Biomass derived hard carbon (ref 20)	27	287.8 mA h g ⁻¹ at 50 mA g ⁻¹ 182.3 mA h g ⁻¹ at 200 mA g ⁻¹ 151.2 mA h g ⁻¹ at 500 mA g ⁻¹ 71 mA h g ⁻¹ at 5000 mA g ⁻¹	181 mA h g ⁻¹ at 220th cycle and 200 mA g ⁻¹ (84.6% capacity retention)
Carbon nanobubbles (ref 54)	not reported	175 mA h g ⁻¹ at 50 mA g ⁻¹ 25 mA h g ⁻¹ at 5000 mA g ⁻¹	>120 mA h g ⁻¹ at 30th cycle and 100 mA g ⁻¹ >60 mA h g ⁻¹ at 30th cycle and 200 mA g ⁻¹

Table S3 Impedance parameters of CP electrodes.

Sample	R _s (Ω)	Error%	R _{ct} +R _{SEI} (Ω)	Error%
Before test	11.6	1.29	82.3	1.61
After 10th	23.1	1.04	138.7	0.73
After 100th	38.5	0.83	261.4	0.45
After 200th	45.1	0.54	283.5	0.41