Supplementary material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2017

An Integrated Approach towards Highly-Efficient and Long-Term Stable Perovskite Nanowires Solar Cells

Chih-Yu Chang,*a Bo-Chou Tsai, Min-Zhen Lin, Yu-Ching Huangb and Cheng-Si Tsaob, Ching Huangb and Cheng-Si Tsaob, Cheng Huangb and Cheng Hu

- ^{a.} Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan 40724, R.O.C. (*E-mail: <u>changcyu@fcu.edu.tw</u>)
- ^{b.} Institute of Nuclear Energy Research, Longtan, Taoyaun, Taiwan 32546, R.O.C.
- ^{c.} Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.

 Table S1
 Summary of the series and shunt resistances of the devices.

1				
	Devic	Shunt resistance $[K\Omega \ cm^2]$	Series resistance $[\Omega \text{ cm}^2]$	
	е			
	А	144.9	213.2	
	С	106	1005.2	
	D	117.6	48.7	

Table S2 Comparison of the device characteristics of perovskite NWs solar cells previously reported as well as the present work.

Source	V _{oc} [volt]	J _{sc} [mA cm ⁻²]	FF [%]	PCE [%]
Reference 1	1.05	19.12	72.10	14.71
Reference 2	1.12	22.47	70.01	17.62
This work	1.01	23.39	79.74	18.83

Fig. S1 X-ray diffraction patterns of: (a) MAPbI₃ compact film and (b) MAPbI₃ NWs.

Fig. S2 Cross-sectional SEM image of MAPbI₃ NWs coated with 10 mol% N-DPBI-doped P(NDI2OD-T2) layer (scale bar = 400 nm).

Fig. S3 *J-V* characteristics of device D measured under simulated AM 1.5G solar irradiation (intensity = 100 mW cm^{-2}) with: (a) different sweep directions (scan rate = 0.15 V s^{-1}) and (b) different voltage sweep rates.

Fig. S4 Image of water droplet on N-DPBI-doped P(NDI2OD-T2) ETL.

References

- 1. J.-H. Im, J. Luo, M. Franckevičius, N. Pellet, P. Gao, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel and N.-G. Park, *Nano Lett.*, 2015, **15**, 2120-2126.
- 2. S. Wanga, S. Yana, M. Wang, L. Chang, J. Wang and Z. Wang, Sol. Energy Mater. Sol. Cells, 2017, 167, 173-177.