Supporting Information

Novel Two-Dimensional Nickel Phthalocyanine-Based Metal-Organic Framework for Highly Efficient Water Oxidation Catalysis

Hongxing Jia,^a Yuchuan Yao,^a Jiangtao Zhao, ^b Yuyue Gao, ^a Zhenlin Luo, ^b Pingwu Du*^a

^a Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, *i*ChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
^b National Synchrotron Radiation Laboratory, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.

*E-mail: <u>dupingwu@ustc.edu.cn</u>

Figure S1. ¹H NMR spectrum of NiPc-NH₂ in DMSO-d₆.

Figure S2. Mass spectrometry for NiPc-NH₂.

Figure S3. XPS data for NiPc-MOF: (a) survey scan; (b) Ni 2p spectrum; and (c) N 1s spectrum.

Figure S4. TEM image of NiPc-MOF material.

Figure S5. EDX data of NiPc-MOF. The Cu signal represented the copper plate substrate, while the presence of S was attributed to the adsorbed DMSO during the reaction.

Figure S6. Nitrogen adsorption isotherm plot of bulk NiPc-MOF powder.

Figure S7. (a) Electrical conductivities of NiPc-MOF (~150 nm thick film on quartz).(b) Arrhenius plot of the conductivity for NiPc-MOF. The activation energy of NiPc-MOF was calculated to be 0.11 meV.

Figure S8. (a) SPM height profile (black line) and corresponding morphology image of a typical NiPc-MOF film on FTO. (b) 3D SPM image of the corresponding NiPc-MOF film.

Figure S9. Powder XRD pattern of NiPc-MOF film scratched from FTO.

Figure S10. (a) Nyquist plots of the NiPc-MOF modified FTO in 1.0 M KOH in the frequency range of 10^{-2} to 10^4 Hz. Inset: impedance data in the high-frequency range showing the lower electrochemical series resistance values for NiPc-MOF. (b) Equivalent circuit for fitting impedance spectra. R_s is the electrolyte resistance, C_{dl} is the double-layer capacitance, R_{ct} is the charge-transfer resistance, and Z_w is the Warburg impedance. The fitted R_s is 11.3 Ω and the R_{ct} of the NiPc-MOF modified FTO was estimated to be 52.3 Ω .

Figure S11. (a) pH dependence of LSV using NiPc-MOF modified FTO working electrode versus Ag/AgCl at pH 7, 9.4, 13, and 13.6. The scan rate was 10 mV/s. (b) Potentials (measured at 1.0 mA cm⁻²) versus pH values with a slope of -131 mV/pH unit.

Figure S12. UV-vis absorption spectra of the electrolyte solution before (black) and after (red) long-term chronopotentiometry testing for NiPc-MOF modified FTO.

Figure S13. The SEM image of NiPc-MOF film on FTO substrate after long-term OER chronopotentiometry test.

Figure S14. Ni 2p spectra of NiPc-MOF before and after long-term chronopotentiometry test.

			nickel sites	
	$(\mu g \text{ cm}^{-2})$	$(\mu g \text{ cm}^{-2})$	$(mol cm^{-2})$	
NiPc-MOF	1.68	7.6	2.86×10-8	

Table S1. ICP-AES data of Ni for NiPc-MOF

catalysts	electrolyte	Onset potentials (V)	Mass activity (A g ⁻¹)	TOF (s ⁻¹)	Tafel slope (mV dec ⁻¹)	References
NiPc-MOF	рН = 13.6 1 М КОН	1.48	883.3, $\eta = 350$ mV	2.5, η = 350 mV	74	This work
[NiL(H ₂ O) ₂](ClO 4) ₂	pH = 6.5 0.3 M acetate buffer	1.73				<i>ChemSusChem</i> 2016, 9, 485
CoH ^{βF} CX-CO₂H	pH = 7 0.1 M phosphate buffer	1.86		0.81, η = 780 mV	120	J. Am. Chem. Soc. 2011, 133, 9178
(CoP) _n -MWCNTs	pH = 13.6 1 M KOH	1.50 ^[a]	$141.4, \eta = 410$ mV		60.8	<i>Chem. Mater.</i> 2015, 27, 4586
Ru(bpa)(pic)- MWCNTs	pH = 7, 0.1 M aqueous Na ₂ SO ₄	1.53		0.3, η = 580 mV	160	Angew. Chem. Int. Ed. 2011, 50, 12276
Со-ТрВру	pH = 7, 0.1 M phosphate buffer	1.63		0.23, $\eta = 400 \text{ mV}$	59	<i>Chem. Mater.</i> 2016, 28, 4375
polyoxometalate- ruthenium @MWCNT	pH = 7, phosphate buffer	1.72 ^[a]		$0.01, \eta = 350 \text{ mV}$	280	Nat. Chem. 2010, 2, 826
Pb-TCPP	1 М КОН	1.60 ^[a]	50, $\eta =$ 470 mV	$0.0014, \eta$ $= 470$ mV	106.2	<i>Dalton Trans.</i> 2016, 45, 61
$[{[4,4'-$ (HO) ₂ OPCH ₂] ₂ bp y} ₂ Ru ^{II} (bpm)Ru ^{II} (Mebimpy)- (OH ₂)] ⁴⁺	pH = 1, 0.1 M HOTf	1.54 ^[a]		0.6, η = 570 mV, 1 M HClO ₄		Angew. Chem. Int. Ed. 2009, 48, 9473

Table S2. The OER activity for selected molecular-based catalysts

[a]: the onset potentials were judged from the reported LSV or CV curves.