Supporting Information for

Hierarchically Porous-Structured Zn_xCo_{1-x}S@C-CNTs Nanocomposites with High-Rate Cycling Performance for Lithium-Ion Batteries

Hao Wang, $^{\&, \dagger}$ *Ziliang Chen*, $^{\&, \dagger}$ *Yang Liu*, † *Hongbin Xu*, † *Licheng Cao*, † *Huilin Qing*, † *and Renbing Wu*, $^{*, \dagger}$

[†]Department of Materials Science, Fudan University, Shanghai 200433, P. R. China

Fig. S1 Rietveld refinement image for the XRD pattern of Zn_xCo_{1-x}S@C-CNTs

Table S1.	. Rietveld	refinement	result fo	r the XR	D pattern	of Zn_xCc	$h_{1-x}S@C-C$	NTs
-----------	------------	------------	-----------	----------	-----------	-------------	----------------	-----

Samula	Dhaga	Space group	Lattice para	Amount	
Sample	Pliase	Space group	а	С	(wt.%)
Zn _x Co _{1-x} S@C-CNTs	3C-type	<i>F</i> -43 <i>m</i>	5.3946(5)	_	71
	2H-type	$P6_3mc$	3.8025(3)	6.1863(5)	22
	С	$P6_3/mmc$	2.48(3)	6.73(2)	7

Fig. S2 Energy Dispersive Spectrometer (EDS) spectrum of $Zn_xCo_{1-x}S@C-CNT$.

Fig. S3 Electrochemical Impedance Spectroscopy of $Zn_xCo_{1-x}S@C-CNTs$ and commercial ZnS as anodes for LIBs.

Fig. S4 (a-b) TEM images of $Zn_xCo_{1-x}S@C$ -CNTs anodes after cycling for over 1000 times at a current density of 1.2 A g⁻¹.

Products	Synthetic method	Electrode formulation ^a	Cycling stability (A/B/n) ^b	Ref.
Yolk-shell-structured Zn-Fe-S	spray pyrolysis	70:20:10(CMC) ^c	913/0.5/50	[S1]
ZnS-RGO	spray pyrolysis	70:20:10(CMC)	628/1/300	[S2]
ZnS/RGO	hydrothermal	80:10:10	790/0.49/300	[83]
ZnS@C	Precipitation Method	75:15:10	304.4/0.4/300	[84]
ZnS@porous carbon	MOF-derived	Bind-free	438/0.1/300	[85]
ZnS/graphene	Solvothermal	Bind-free	570/0.2/200	[86]
Core-shell structured	Chitosan-assisted	70:15:15(CMC)	530/0.1/600	[S7]
ZnS-C	hydrothermal			
Spherical ZnS/C	Spray pyrolysis	70:15:15(CMC)	868/1/300	[S8]
ZnS/C	Solvothermal	70:15:15(CMC)	741/0.1/300	[89]
ZnS@NC	Hydrothermal	70:15:15 (SA) ^d	690/0.1/100	[S10]
Co-Zn-S@NS-C-CNT	Bimetal-organic- frameworks derivation	80:10:10	941/0.1/250	[S11]
$Zn_xCo_{1-x}S$	Oil phase approach	80:10:10	750/0.2/100	[S12]
Zn _x Co _{1-x} S@C-CNTs	Precipitation Method	70:20:10	635/1.2/1000	Our work

Table S2 Comparison of electrochemical performances of $Zn_xCo_{1-x}S@C-CNTs$ anode with previously reported zinc chalcogenides-based electrodes.

^aWeight ratio of the active material, carbon and binder. PVDF was used as binder if not mentioned. Other values used were specified.

 ${}^{b}A/B/n$ means the capacity of A (mAh g⁻¹) remained after *n* cycles at the certain current density of B (A g⁻¹). ^cCMC means carboxymethyl cellulose.

^{*d*}SA means sodium alginate.

Reference

- S1. J. M. Won, J. Lee and Y. C. Kang, Chem. Eur. J., 2015, 21, 1429-1433.
- S2. G. D. Park, S. H. Choi, J. Lee and Y. C. Kang, Chem. Eur. J., 2014, 20, 12183-12189.
- S3. Y. Feng, Y. Zhang, Y. Wei, X. Song, Y. Fub and V. S. Battaglia, *Phys. Chem. Chem. Phys.*, 2016, 18, 30630-30642.
- S4. L. He, X. Liao, K. Yang, Y. He, W. Wen and Z. Ma, *Electrochim. Acta*, 2011, 56, 1213-1218.
- S5. Y. Fu, Z. Zhang, X. Yang, Y. Gan and W. Chen, RSC Adv., 2015, 5, 86941-86944.
- S6. M. Mao, L. Jiang, L. Wu, M. Zhang and T. Wang, J. Mater. Chem. A, 2015, 3, 13384-13389.
- S7. X. Du, H. Zhao, Z. Zhang, Y. Lu, C. Gao, Z. Li, Y. Teng, L. Zhao and K. Swierczek, *Electrochim*. *Acta*, 2017, 225, 129-136.
- S8. Y. S. Jang and Y. C. Kang, Phys. Chem. Chem. Phys., 2013, 15, 16437-16441.
- X. Du, H. Zhao, Y. Lu, Z. Zhang, A. Kulka and K. Swierczek, *Electrochem. Acta*, 2017, 228, 100-106.
- S10. J. Li, Y. Fu, X. Shi, Z. Xu and Z. Zhang, Chem. Eur. J., 2017, 23, 157-166.
- S11. H. Li, Y. Su, W. Sun and Y. Wang, Adv. Funct. Mater., 2016, 26, 8345-8353.
- S12. J. Yang, Y. Zhang, C. Sun, G. Guo, W. Sun, W. Huang, Q. Yan and X. Dong, J. Mater. Chem. A, 2015, 3, 11462-11470.