Electronic Supporting Information

Facile and template-free fabrication of mesoporous 3D nanospheres-like MnxCo₃₋ _xO₄ as highly effective catalysts for low temperature SCR of NO_x with NH₃ Xiaonan Hu,^a Lei Huang,^{a,*} Jianping Zhang,^a Hongrui Li,^a Kaiwen Zha,^a Liyi Shi^b and Dengsong Zhang^{a,*}

^a Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China.

^b Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China.

*Corresponding authors. Fax: +86-21-66136079; Tel: +86-21-66137152.

E-mail addresses: <u>leihuang@shu.edu.cn</u> (L. Huang), <u>dszhang@shu.edu.cn</u> (D. Zhang).

Fig. S1. XRD patterns of MnCo(1:3) prepared for 30 min and 12 h before (a) and after (b) calcination.

Fig. S2. The enlarged N_2 adsorption-desorption isotherms of MnCo(1:3).

Fig. S3. EDX spectrum of MnCo(1:3) (a) and C-MnCo(1:3) (b).

Fig. S4. TEM images of C-MnCo(1:3) collected at different durations: a) 1 min, b) 20 min and c)30 min. The corresponding EDX-mapping of C-MnCo(1:3) prepared for 1min (d-h).

Fig. S5. The effect of different temperatures in the preparation process of C-MnCo(1:3): a,b) room temperature (reacted with 6 h); c) 60 °C (reacted with 30 min) and d) 80 °C (reacted with 30 min).

Fig. S6. The TEM images of different concentration for $Mn_xCo_{3-x}O_4$ materials: a) $C_{KMnO4} = 6.25 \times 10^{-3}$ M which was a typical concentration described in the experimental section, b) $C_{KMnO4} = 12.5 \times 10^{-3}$ M.

Fig. S7. TEM images about the as-synthesized $Mn_xCo_{3-x}O_4$ materials at different feeding ratio (a)

1:1, (b) 1:3, (c) 1:5 and (d) 1:10.

Fig. S8. XRD patterns of MnCo(1:3) after calcination at 350, 450 and 550 °C in air with a ramping speed of 5 °C/min.

Fig. S9. TEM images of MnCo(1:3) after calcination at 350 °C (a), 450 °C (b) and 550 °C (c) in air at a ramping rate of 5 °C/min.

Fig. S10. N_2O concentration detected at different temperature over different $Mn_xCo_{3-x}O_4$ catalysts.

Fig. S11. NH_3 -SCR activity of MnCo(1:3) and C-MnCo(1:3).

Fig. S12. NH₃-SCR activity from 70 to 120 °C (keep 60 min after reaching each temperature step).

Fig. S13. a, b) The TEM images of C-MnCo(1:3) catalysts after H₂O resistance test.

Fig. S14. SO₂ resistance test of C-MnCo(1:3) catalysts at 210 $^{\circ}$ C

Fig. S15. NH_3 -TPD plots (a) and H_2 -TPR plots (b) of C-MnCo(1:3) and C-MnCo(1:5) catalysts,

respectively.

Fig. S16. In situ DRIFT spectra of NH₃ desorption after 500 ppm of NH₃ adsorption for 60 min on C-MnCo(1:3) (a) and C-MnCo(1:5) catalysts (c); In situ DRIFT spectra of NO_x desorption after 500 ppm of NO + 5% O₂ co-adsorption for 60 min on C-MnCo(1:3) (b) and C-MnCo(1:5) catalysts (d) as a function of temperature.

Sample	Preparation	BET surface	T(S)EM images	Ref.
	method	area (m²/g)		
C-MnCo(1:3)	Redox, 70 °C,30 min	226.7 (before calcination) 124.0 (after calcination)	2 <u>00 nm</u>	This work
MnCo ₂ O ₄	Template-assisted (KIT-6)	133	5 <u>0 mm</u>	[1]

Table S1. Summarized specific information about different preparation procedure.

References:

- C 120 (2016) 23976-23983.
- [2] C. Shi, Y. Wang, A. Zhu, B. Chen, C. Au, Catal. Commun. 28 (2012) 18-22.
- [3] M. Qiu, S. Zhan, H. Yu, D. Zhu, S. Wang, Nanoscale 7 (2015) 2568-2577.

^[1] C. Xiao, X. Zhang, T. Mendes, G. P. Knowles, A. Chaffee, D. R. MacFarlane, J. Phys. Chem.

- [4] G. Huang, S. Xu, Z. Xu, H. Sun, L. Li, ACS Appl. Mater. Inter. 6 (2014) 21325-21334.
- [5] L. Zhang, L. Shi, L. Huang, J. Zhang, R. Gao, D. Zhang, ACS Catal. 4 (2014) 1753-1763.
- [6] G. Yang, X. Xu, W. Yan, H. Yang, S. Ding, Electrochim. Acta 137 (2014) 462-469.
- [7] L. Zhou, D. Zhao, X. W. Lou, Adv. Mater. 24 (2012) 745-748.

Table S2. Theoretical weight loss according to the reaction equations.

Items	Reaction equation	Weight loss (%)
1	$12\text{MnO}_2 + 36\text{CoOOH} \rightarrow 4\text{Mn}_3\text{Co}_9\text{O}_{16} + 18\text{H}_2\text{O} + 7\text{O}_2$	12.6
2	$12Mn(OH)_4 + 36CoOOH \rightarrow 4Mn_3Co_9O_{16} + 42H_2O + 7O_2$	20.5
3	$12MnO_2 + 36Co(OH)_3 \rightarrow 4Mn_3Co_9O_{16} + 54H_2O + 7O_2$	23.9
4	$12Mn(OH)_4 + 36Co(OH)_3 \rightarrow 4Mn_3Co_9O_{16} + 78H_2O + 7O_2$	29.9

The corresponding weight loss from 200 to 350 °C in TG was calculated below:

Weight $_{200 \circ C} = 92.3\%$ Weight $_{350 \circ C} = 82.9\%$ Weight $_{00-350 \circ C} = \frac{92.3\% - 82.9\%}{92.3\%} \times 100\% = 10.2\%$

Catalyst	SCR performance (NO	GHSV (h ⁻¹)	BET surface	Ref.
	conversion > 80%)		area (m²/g)	
C-MnCo(1:3)	75 – 325 °C	23,000		
	100 – 315 °C	45,000	124.0	This work
	115 – 315 °C	90,000		
MnCo ₂ O _x	>80 °C	12,000	42	[1]
Mn ₂ Co ₁ O _x (combustion)	>125 °C	30,000	63.9	[2]
3D-MnCo ₂ O ₄	75 - 300 °C	32,000	92.9	[3]
Mn _x Co _{3-x} O ₄ nanocages	>125 °C	38,000	77.1	[4]
CoMn ₂ O ₄ microspheres	150 – 375 °C	50,000	36	[5]
Mn _{0.05} Co _{0.95} O _x	150 - 210°C	60,000	31.9	[6]
CoMn ₂ O ₄ spinels	>325 °C	90,000	109	[7]

Table S3. The SCR activity about $Mn_xCo_{3-x}O_4$ catalysts from different literatures.

References:

- [1] T. Xu, C. Wang, X. Wu, B. Zhao, Z. Chen, D. Weng, RSC Adv. 6 (2016) 97004-97011.
- [2] J. Qiao, N. Wang, Z. Wang, W. Sun, K. Sun, Catal. Commun. 72 (2015) 111-115.
- [3] M. Qiu, S. Zhan, H. Yu, D. Zhu, S. Wang, Nanoscale 7 (2015) 2568-2577.

[4] L. Zhang, L. Shi, L. Huang, J. Zhang, R. Gao, D. Zhang, ACS Catal. 4 (2014) 1753-1763.

- [5] Y. Li, Y. Li, Q. Shi, M. Qiu, S. Zhan, J. Sol-Gel Sci. Techn. 81 (2017) 576-585.
- [6] H. Hu, S. Cai, H. Li, L. Huang, L. Shi, D. Zhang, J. Phys. Chem. C 119 (2015) 22924-22933.

Calculation

The Nerst equations were described as follows:

$$MnO_{4}^{-} + 4H^{+} + 3e^{-} \rightarrow MnO_{2} + 2H_{2}O$$
(1)

$$\varphi = \varphi^{\theta} + \frac{RT}{nF} \frac{\text{oxidant}}{\text{nreductant}} = 1.69 + \frac{0.0591}{3} \frac{[MnO4 -][H +]4}{[MnO2]}$$
(2)

$$= 1.69 - \frac{0.0591}{3} \times 4 \times 5.7 = + 1.24 \text{ V (pH} = 5.7, \text{ T} = 298 \text{ K})$$
CoOOH + 3H⁺ + e⁻ \rightarrow Co²⁺ + 2H₂O (2)

$$\varphi = \varphi^{\theta} + \frac{RT}{nF} \frac{\text{oxidant}}{\text{nreductant}} = 1.81 + 0.05911g \frac{[CoOOH][H +]3}{[Co2 +]}$$
(2)

$$= 1.81 - 0.0591 \times 3 \times 5.4 = + 0.85 \text{ V (pH} = 5.4, \text{ T} = 298 \text{ K})$$

^[7] X. Wang, Z. Lan, K. Zhang, J. Chen, L. Jiang, R. Wang, J. Phys. Chem. C 121 (2017) 3339-3349.