Supplementary Information

Ultrahigh-Surface-Area Hierarchical Porous Carbon from Chitosan:

Acetic Acid Mediated Efficient Synthesis and Its Application in

Superior Supercapacitor

Jianyu Huang, Yeru Liang^{*}, Hang Hu, Simin Liu, Yijin Cai, Hanwu Dong, Mingtao Zheng, Yong Xiao, Yingliang Liu^{*}

College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

Fig. S1 Photographs of the chitosan aqueous solution obtained with (left) and without (right) the addition of acetic acid.

Fig. S2 Photographs of the hydrochar obtained with (left) and without (right) the addition of acetic acid.

Fig. S3 SEM images of the hydrochars obtained (a) with and (b) without the addition of acetic acid.

Fig. S4 (a) XPS spectrum, (b) elemental content information, (c) high-resolution N 1s spectrum of the C-HPC and (d) high-resolution O 1s spectrum.

Fig. S5 (a) CV and (b) GCD curves of YP-50. (c) CV and (d) GCD curves of control sample.

Fig. S6 Comparisons of (a) the CV curves obtained at a sweep rate of 5 mV s⁻¹ and (b) the GCD curves obtained at a current density of 0.5 A g⁻¹ for C-HPC, the control sample and YP-50.

Fig. S7 (a) CV curves at different sweep rates and (b) GCD curves at different current densities of C-HPC-based coin-type symmetrical supercapacitors by using 6 M KOH aqueous solution as electrolyte.

Fig. S8 (a) Specific capacitances of C-HPC, control sample and YP-50 tested in cointype symmetrical supercapacitors by using 6 M KOH aqueous solution as electrolyte at different current densities.

Fig. S9 Ragone plots of coin-type symmetrical supercapacitors for C-HPC, control sample and YP-50 by using 6 M KOH aqueous solution as electrolyte.

Fig. S10 (a) GCD curves of C-HPC at various current densities obtained in coin-type

symmetrical supercapacitors by using 1 M Na₂SO₄ aqueous solution as electrolyte.

Fig. S11 Nyquist plots of the C-HPC coin-type symmetrical supercapacitors by using 6 M KOH aqueous solution and 1 M Na₂SO₄ aqueous solution as electrolyte.

D . C		0	17	A		
Refer.	Pore structure	S_{BET}	V_t	Activation	Carbonization	Source
Number	TT 1 1	(m² g ²)	(cm ³ g ⁻¹)	Agent	Temperature	
I nis	Hierarchical	3532	1.64	КОН	800	Chitosan
work	porous structure					
1	Hierarchical	1013	0.58	K ₂ CO ₃	800	Chitosan
	porous structure					
2	Hierarchical	2435	1 09	КОН	800	Chitosan
	porous structure	2135		Roll		
3	Micro/meso-	2616	1 28	КОЦ	900	Chitoson
5	porous structure	2010	1.20	KOII	900	Cintosan
2	Micro/meso-	2220	2 20	ROIL	1000	
3	porous structure	3330	2.20	кон	1000	Chilosan
	Hierarchical	1711		VOU	700	Chitosan and
4	porous structure	1511	-	КОН	700	graphene
	Hierarchical			ZnCl ₂	700	Chitosan
5	porous structure	1582	1.23			
6	Micro/meso-	1567	0.48	ZnCl ₂		
	porous structure				900	Chitosan
7	Micro/meso-		0.45			Chitosan
	porous structure	1054		CO_2	900	
	Hierarchical		0.54			Chitosan
8	norous structure	1785		ZnCl ₂	700	
	Microporous					
9	structure	440		Na ₂ CO ₃	600	Chitosan
	structure					
10	Hierarchical	692	3.02	_	900	Chitosan and
10	porous structure	0)2	5.02		200	graphene
	Hierarchical			-	900	Chitosan
10	porous structure	472	1.94			
	Micro/meso-			-	900	
11	porous carbon	1510	1.32			Chitosan
	Hierarchical			$Zn(NO_2)_2$	800	Chitosan
12	porous structure	1956	1.48	6H2O		
	Hierarchical			01120	800	
13	porous structure	2169	0.99	КОН		Chitosan
	Micro/meso-					
14	norous structure	2807	-	КОН	750	Chitosan
	Micro/maso		-	КОН	850	Chitosan
14	norous structure	2397				
	porous structure					

 Table S1 Summary BET surface areas, total pore volumes, activating agents and

 experience conditions for the reported porous carbons derived from chitosan.

Refer. Number	S _{BET} (m ² g ⁻¹)	Activation Method Activation Agent		Biomass
This work	3532	Chemical	КОН	Chitosan
15	2250	Chemical	ZnCl ₂ +FeCl ₃	Moringa oleifera stems
16	2312	Chemical	КОН	Moringa oleifera branches
17	2252	Chemical	КОН	Gelatin
18	2968	Chemical	КОН	Pumpkin
19	1930	Chemical	КОН	Peanut skin
20	2396	Chemical	КОН	Peanut shell
21	2839	Chemical	КОН	Sewage sludge
22	598	Chemical	КОН	Glucosamine hydrochloride
23	1962	Chemical	NaOH	Paulownia sawdust
24	2218	Chemical	КОН	Lignin
25	1260	Chemical	КОН	Sawdust
25	1850	Chemical	КОН	Sawdust
26	898	Physical	NH ₃	Typha orientalis
27	1103	Chemical	КОН	Fungus
28	1363	Chemical	КОН	Almond shell
29	2585	Chemical	КОН	Sunflower seed shell
30	2342	Chemical	КОН	Potato starch
31	2160	Chemical	ZnCl ₂ +KCl	Glucose
32	2457	Chemical	КОН	Cellulose

Table S2 Summary of BET surface areas, activation method and activation agent forthe reported hierarchal porous carbons derived from different precursors.

32	2273	Chemical	КОН	Starch
33	3251	Chemical	КОН	Starch
34	1510	Chemical	КОН	Starch
35	2316	Chemical	КОН	Wheat straw
36	2157	Chemical	КОН	Pig bone
37	2273	Chemical	КОН	Fish scale
38	1273	Chemical	КОН	Cherry stones
39	416	Chemical	КОН	Waste news paper
40	2405	Chemical	КОН	Enteromorpha prolifera
40	1204	Chemical	КОН	Enteromorpha prolifera
41	2106	Chemical	КОН	Fermented rice
42	1413	Chemical	КОН	Bamboo
43	169	Chemical	КОН	Bamboo
44	2073	Chemical	КОН	Algae
45	2855	Chemical	КОН	Silk
46	2496	Chemical	ZnCl ₂ +FeCl ₃	Silk
47	2454	Chemical	КОН	Silk fibroin
48	2490	Chemical	КОН	Bluestem
48	1616	Chemical	NaOH	Bluestem
48	552	Chemical	NaHCO ₃	Bluestem
49	2111	Chemical	КОН	Coffee grounds
50	1758	Chemical	КОН	Artemia cyst shell
51	491	Chemical	H ₃ PO ₄	Bacterial cellulose
52	3270	Chemical	КОН	Seaweed
52	2170	Chemical	КОН	Seaweed
53	3054	Chemical	КОН	Corncob
54	1776	Chemical	КОН	Willow catkins

55	1589	Chemical	КОН	Willow catkins
56	1586	Chemical	КОН	Willow catkins
57	1929	Chemical	КОН	Olive pits
58	1081	Chemical	КОН	Shiitake mushroom
58	2988	Chemical	H ₃ PO ₄ +KOH	Shiitake mushroom
58	1315	Chemical	H ₃ PO ₄	Shiitake mushroom
59	3398	Chemical	КОН	Bean dregs
59	2555	Chemical	КОН	Bean dregs
60	2130	Chemical	H ₃ PO ₄	Soybean residue
61	580	Chemical	КОН	Soybean
62	1124	Physical	Air	Grape seed
63	3350	Chemical	КОН	Sisal fiber
64	2140	Chemical	КОН	Cornstalks
65	2296	Chemical	КОН	Bagasse
66	1154	Chemical	КОН	Plane tree
67	2821	Chemical+Physical	KOH+CO ₂	Fir wood
32	2331	Chemical	КОН	Wood
32	2967	Chemical	КОН	Wood
68	1750	Physical	Steam	Wood
68	1579	Chemical	ZnCl ₂	Wood
69	1926	Physical	Steam	Coconut shell
70	1356	Chemical	КОН	Coconut shell
71	1028	Physical	Air	Coconut shell
72	1652	Chemical+Physical	ZnCl ₂ +CO ₂	Coconut shell

73	1026	Chemical+Physical	KOH+CO ₂	Coconut shell
74	1874	Chemical	ZnCl ₂ +FeCl ₃	Coconut shell
75	1266	Chemical	ZnCl ₂	Coconut shell
76	2841	Chemical	КОН	Tea leaves
77	1409	Chemical	K ₂ CO ₃ +KOH	Fallen leaves
78	1395	Chemical	K ₂ CO ₃	Reed black liquor
79	1217	Chemical	K ₂ CO ₃	Reed black liquor
80	2710	Chemical	КОН	Rice husk
80	2304	Chemical	КОН	Rice husk
81	176	Chemical	H ₃ PO ₄	Rice husk
81	1295	Chemical	H ₃ PO ₄	Rice husk
82	162	Chemical	H ₃ PO ₄	Rice husk
68	1930	Chemical	КОН	Rice husk
68	1886	Chemical	NaOH	Rice husk
83	2287	Chemical	КОН	Hemp bast fiber
84	721	Chemical	ZnCl ₂	Spider silk
85	1212	Chemical	КОН	Broussonetia papyrifera
86	1230	Chemical	КОН	Neem dead leaves
87	2646	Chemical	КОН	Black liquor

Table S3 Summary of BET surface areas corrensponding activation method and

Refer. Number	S _{BET} (m ² g ⁻¹)	Activation Tempreture (°C)	Activation Agent	ActivationCarbon Source/AgentActivation Agent	
This work	3532	800	кон	3:1	Chitosan
88	2582	900	КОН	10:1	Graphene
64	3200	750	КОН	10:1	Cornstalks
89	3100	800	КОН	9:1	Graphene
90	3247	900	КОН	7:1	Phenolic resin
91	3023	900	КОН	6:1	Polystyrene
92	2224	800	КОН	6:1	Olive pits
93	2896	800	NaOH	6:1	Rice hull
63	3350	900	КОН	5:1	Sisal fibers
48	2490	820	КОН	5:1	Big bluestem grass
94	3304	800	КОН	4:1	Rice husk
95	3404	800	КОН	4:1	Celtuce leaves
76	2841	800	КОН	4:1	Waste tea- leaves
32	2973	800	КОН	4:1	Eucalyptus wood sawdust
53	3054	850	КОН	4:1	Corncobs
45	2854	800	КОН	4:1	Silk cocoons
33	3251	800	КОН	4:1	Porous starch

conditions for porous carbons derived from different precursors.

Table S4 The contents of C, H and N of the chitosan, hydrochar without use of acetic

Samples	C (%)	N (%)	Н (%)
Chitosan	40.3	7.4	7.8
Hydrochar without use of acetic acid	42.2	7.8	7.5
Hydrochar with use of acetic acid	61.9	5.5	5.1

acid and hydrochar with used of acetic acid.

 Table S5 Comparision of the electrochemical performance for representative carbons.

Samplas	Refer.	Current	Cap (acitance F g ⁻¹)	Current Density (A g ⁻¹)	Capacitance (F g ⁻¹)	
samples	Number	(A g ⁻¹)	Ref.	This work (C-HPC)		Ref.	This work (C-HPC)
Mesoporous carbon	96	0.5	225	455	20	165	332
Ordered mesoporous carbon/graphene aerogel	97	0.5	197	455	10	140	341
Nitrogen-doped graphene	98	0.5	250	455	20	180	333
Carbon nanospheres	99	0.5	140	455	2	110	380
Carbon nanocages	100	0.5	220	455	50	155	318
Microporous carbon nanosheets	101	0.5	210	455	50	160	318
Porous carbon nanosheets	102	0.5	250	455	20	130	333
Carbon nanosheets	103	0.5	257	455	50	200	318
Ordered mesoporous carbon	104	1	292	407	50	185	318
Hierarchical porous carbon	105	0.5	318	455	50	189	318
Nitrogen-doped porous carbon nanofibers	106	1	202	407	20	175	333
Nanoporous carbon spheres	107	0.5	405	455	50	268	318
Porous carbon nanosheets	15	0.5	283	455	50	204	318
Hierarchical porous carbons	16	0.5	355	455	50	230	318
Carbon microtubes	54	1	292	407	10	244	341
YP-50	This work	0.5	189	455	50	144	318

References

1. Zhang F, Liu T, Hou G, Kou T, Yue L, et al, NANO RES, 2016, 9, 2875-2888.

- 2. Hao P, Zhao Z, Leng Y, Tian J, Sang Y, et al, NANO ENERGY, 2015, 15, 9-23.
- 3. Hu Y, Wang H, Yang L, Liu X, Zhang B, et al, J ELECTROCHEM SOC, 2013, 160, H321-H326.
- 4. Sun G, Li B, Ran J, Shen X, Tong H, ELECTROCHIM ACTA, 2015, 171, 13-22.
- 5. Deng X, Zhao B, Zhu L, Shao Z, CARBON, 2015, 93, 48-58.
- 6. Sun L, Fu Y, Tian C, Yang Y, Wang L, et al, CHEMSUSCHEM, 2014, 7, 1637-1646.
- 7. Sliwak A, Diez N, Miniach E, Gryglewicz G, JAPPL ELECTROCHEM, 2016, 46, 667-677.
- 8. Wang Y, Hou B, Lu H, Wan F, Wang J, Wu X, RSC ADV, 2015, 5, 97427-97434.
- 9. Kucinska A, Cyganiuk A, Lukaszewicz JP, CARBON, 2012, 50, 3098-3101.
- 10. Zhang Y, Zhu J, Ren H, Bi Y, Zhang L, CHINESE CHEM LETT, 2017, 28, 935-942.
- 11. Liu Q, Duan Y, Zhao Q, Pan F, Zhang B, Zhang J, LANGMUIR, 2014, 30, 8238-8245.
- 12. Jiang Y, Wang Y, Zhang Y, Shu X, Chen Z, Wu Y, *J SOLID STATE ELECTR*, 2015, 19, 3087-3096.
- 13. Zhu L, Shen F, Smith RL, Qi X, Energy Technology, 2017, 5, 452-460.
- 14. Lota K, Acznik I, Sierczynska A, Lota G, MATER LETT, 2016, 173, 72-75.
- 15. Cai Y, Luo Y, Dong H, Zhao X, Xiao Y, et al, J POWER SOURCES, 2017, 353, 260-269.
- 16. Cai Y, Luo Y, Xiao Y, Zhao X, Liang Y, et al, ACS Appl Mater Interfaces, 2016, 8, 33060-33071.
- 17. Fan H, Shen W, ACS SUSTAIN CHEM ENG, 2016, 4, 1328-1337.
- 18. Bai S, Tan G, Li X, Zhao Q, Meng Y, et al, CHEM-ASIAN J, 2016, 11, 1828-1836.
- 19. Wang H, Yu W, Shi J, Mao N, Chen S, Liu W, ELECTROCHIM ACTA, 2016, 188, 103-110.
- 20. Ding J, Wang H, Li Z, Cui K, Karpuzov D, et al, ENERG ENVIRON SCI, 2015, 8, 941-955.
- 21. Feng H, Zheng M, Dong H, Xiao Y, Hu H, et al, J MATER CHEM A, 2015, 3, 15225-15234.
- 22. Zhao L, Fan L, Zhou M, Guan H, Qiao S, et al, ADV MATER, 2010, 22, 5202.
- 23. Liu X, Zheng M, Xiao Y, Yang Y, Yang L, et al, ACS APPL MATER INTER, 2013, 5, 4667-4677.
- 24. Zhang L, You T, Zhou T, Zhou X, Xu F, ACS APPL MATER INTER, 2016, 8, 13918-13925.
- 25. Sevilla M, Fuertes AB, ENERG ENVIRON SCI, 2011, 4, 1765-1771.
- 26. Chen P, Wang L, Wang G, Gao M, Ge J, et al, ENERG ENVIRON SCI, 2014, 7, 4095-4103.
- 27. Long C, Chen X, Jiang L, Zhi L, Fan Z, NANO ENERGY, 2015, 12, 141-151.
- 28. Wu C, Yang S, Cai J, Zhang Q, Zhu Y, Zhang K, ACS APPL MATER INTER, 2016, 8, 15288-15296.
- 29. Li X, Xing W, Zhuo S, Zhou J, Li F, et al, *BIORESOURCE TECHNOL*, 2011, 102, 1118-1123.
- 30. Zhao S, Wang C, Chen M, Wang J, Shi Z, J PHYS CHEM SOLIDS, 2009, 70, 1256-1260.
- 31. Pampel J, Denton C, Fellinger T, CARBON, 2016, 107, 288-296.
- 32. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G, ADV ENERGY MATER, 2011, 1, 356-361.
- 33. Du S, Wang L, Fu X, Chen M, Wang C, BIORESOURCE TECHNOL, 2013, 139, 406-409.
- 34. Li Q, Wang H, Dai Q, Yang J, Zhong Y, SOLID STATE IONICS, 2008, 179, 269-273.
- 35. Li X, Han C, Chen X, Shi C, MICROPOR MESOPOR MAT, 2010, 131, 303-309.
- 36. Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z, ENERG ENVIRON SCI, 2011, 4, 736-740.
- 37. Chen W, Zhang H, Huang Y, Wang W, JOURNAL OF MATERIALS CHEMISTRY, 2010, 20, 4773-4775.
- 38. Olivares-Marin M, Fernandez JA, Lazaro MJ, Fernandez-Gonzalez C, Macias-Garcia A, et al, *MATER CHEM PHYS*, 2009, 114, 323-327.
- 39. Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG, *J POWER SOURCES*, 2009, 190, 587-591.
- 40. Gao X, Xing W, Zhou J, Wang G, Zhuo S, et al, ELECTROCHIM ACTA, 2014, 133, 459-466.

- 41. Gao S, Chen Y, Fan H, Wei X, Hu C, et al, J MATER CHEM A, 2014, 2, 3317-3324.
- 42. Kim YJ, Lee BJ, Suezaki H, Chino T, Abe Y, et al, CARBON, 2006, 44, 1592-1595.
- 43. Chen H, Liu D, Shen Z, Bao B, Zhao S, Wu L, ELECTROCHIM ACTA, 2015, 180, 241-251.
- 44. Yu W, Wang H, Liu S, Mao N, Liu X, et al, J MATER CHEM A, 2016, 4, 5973-5983.
- 45. Wang M, Bai L, Zhang L, Sun G, Zhang X, Dong S, ANALYST, 2016, 141, 2447-2453.
- 46. Hou J, Cao C, Idrees F, Ma X, ACS NANO, 2015, 9, 2556-2564.
- 47. Zhang J, Cai Y, Zhong Q, Lai D, Yao J, NANOSCALE, 2015, 7, 17791-17797.
- 48. Jin H, Wang X, Gu Z, Hoefelmeyer JD, Muthukumarappan K, Julson J, RSC ADV, 2014, 4, 14136-14142.
- 49. Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin H, ACS APPL MATER INTER, 2015, 7, 3684-3690.
- 50. Zhao Y, Ran W, He J, Song Y, Zhang C, et al, ACS APPL MATER INTER, 2015, 7, 1132-1139.
- 51. Wang X, Kong D, Zhang Y, Wang B, Li X, et al, *NANOSCALE*, 2016, 8, 9146-9150.
- 52. Kang D, Liu Q, Gu J, Su Y, Zhang W, Zhang D, ACS NANO, 2015, 9, 11225-11233.
- 53. Wang D, Geng Z, Li B, Zhang C, ELECTROCHIM ACTA, 2015, 173, 377-384.
- 54. Xie L, Sun G, Su F, Guo X, Kong Q, et al, J MATER CHEM A, 2016, 4, 1637-1646.
- 55. Li Y, Wang G, Wei T, Fan Z, Yan P, NANO ENERGY, 2016, 19, 165-175.
- 56. Wang K, Zhao N, Lei S, Yan R, Tian X, et al, ELECTROCHIM ACTA, 2015, 166, 1-11.
- 57. Redondo E, Carretero-Gonzalez J, Goikolea E, Segalini J, Mysyk R, *ELECTROCHIM ACTA*, 2015, 160, 178-184.
- 58. Cheng P, Gao S, Zang P, Yang X, Bai Y, et al, CARBON, 2015, 93, 315-324.
- 59. Ruan C, Ai K, Lu L, RSC ADV, 2014, 4, 30887-30895.
- 60. Ferrero GA, Fuertes AB, Sevilla M, SCI REP-UK, 2015, 5.
- 61. Long C, Jiang L, Wu X, Jiang Y, Yang D, et al, CARBON, 2015, 93, 412-420.
- 62. Jimenez-Cordero D, Heras F, Gilarranz MA, Raymundo-Pinero E, CARBON, 2014, 71, 127-138.
- 63. Liang Y, Wu B, Wu D, Xu F, Li Z, et al, *JOURNAL OF MATERIALS CHEMISTRY*, 2011, 21, 14424-14427.
- 64. Zhang F, Ma H, Chen J, Li G, Zhang Y, Chen J, *BIORESOURCE TECHNOL*, 2008, 99, 4803-4808.
- 65. Feng H, Hu H, Dong H, Xiao Y, Cai Y, et al, J POWER SOURCES, 2016, 302, 164-173.
- 66. Zhang Y, Liu X, Wang S, Dou S, Li L, J MATER CHEM A, 2016, 4, 10869-10877.
- 67. Wu F, Tseng R, Hu C, Wang C, J POWER SOURCES, 2006, 159, 1532-1542.
- 68. Guo YP, Qi JR, Jiang YQ, Yang SF, Wang ZC, Xu HD, MATER CHEM PHYS, 2003, 80, 704-709.
- 69. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H, IND CROP PROD, 2008, 28, 190-198.
- 70. Foo KY, Hameed BH, CHEM ENG J, 2012, 184, 57-65.
- 71. Tam MS, Antal MJ, IND ENG CHEM RES, 1999, 38, 4268-4276.
- 72. Jain A, Aravindan V, Jayaraman S, Kumar PS, Balasubramanian R, et al, SCI REP-UK, 2013, 3.
- 73. Din ATM, Hameed BH, Ahmad AL, *J HAZARD MATER*, 2009, 161, 1522-1529.
- 74. Sun L, Tian C, Li M, Meng X, Wang L, et al, J MATER CHEM A, 2013, 1, 6462-6470.
- 75. Azevedo DCS, Araujo JCS, Bastos-Neto M, Torres AEB, Jaguarible EF, Cavalcante CL,*MICROPOR MESOPOR MAT*, 2007, 100, 361-364.
- 76. Peng C, Yan X, Wang R, Lang J, Ou Y, Xue Q, ELECTROCHIM ACTA, 2013, 87, 401-408.
- 77. Li Y, Pi Y, Lu L, Xu S, Ren T, J POWER SOURCES, 2015, 299, 519-528.
- 78. Sun Y, Zhang J, Yang G, Li Z, ENVIRON TECHNOL, 2007, 28, 491-497.

- 79. Sun Y, Zhang J, Yang G, Li Z, CHEM BIOCHEM ENG Q, 2006, 20, 429-435.
- 80. Guo YP, Yang SF, Yu KF, Zhao JZ, Wang ZC, Xu HD, MATER CHEM PHYS, 2002, 74, 320-323.
- 81. Guo Y, Rockstraw DA, MICROPOR MESOPOR MAT, 2007, 100, 12-19.
- 82. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E, *BIORESOURCE TECHNOL*, 2008, 99, 6809-6816.
- 83. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, et al, ACS NANO, 2013, 7, 5131-5141.
- 84. Zhou L, Fu P, Cai X, Zhou S, Yuan Y, APPL CATAL B-ENVIRON, 2016, 188, 31-38.
- 85. Wei T, Wei X, Gao Y, Li H, ELECTROCHIM ACTA, 2015, 169, 186-194.
- 86. Biswal M, Banerjee A, Deo M, Ogale S, ENERG ENVIRON SCI, 2013, 6, 1249-1259.
- 87. Zhu L, Shen F, Jr. Smith RL, Yan L, Li L, Qi X, CHEM ENG J, 2017, 316, 770-777.
- 88. Xu J, Tan Z, Zeng W, Chen G, Wu S, et al, ADV MATER, 2016, 28, 5222-5228.
- 89. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, et al, SCIENCE, 2011, 332, 1537-1541.
- Wang J, Yang X, Wu D, Fu R, Dresselhaus MS, Dresselhaus G, J POWER SOURCES, 2008, 185, 589-594.
- 91. Zhong H, Xu F, Li Z, Fu R, Wu D, NANOSCALE, 2013, 5, 4678.
- 92. Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R, *ELECTROCHIM ACTA*, 2015, 160, 178-184.
- Chen H, Wang H, Yang L, Xiao Y, Zheng M, et al, *INT J ELECTROCHEM SC*, 2012, 7, 4889-4897.
- 94. Liu D, Zhang W, Lin H, Li Y, Lu H, Wang Y, J CLEAN PROD, 2016, 112, 1190-1198.
- 95. Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q, ACS APPL MATER INTER, 2012, 4, 5800-5806.
- 96. Wang Z, Zhou M, Chen H, Jiang J, Guan S, CHEM-ASIAN J, 2014, 9, 2789-2797.
- 97. Liu R, Wan L, Liu S, Pan L, Wu D, Zhao D, ADV FUNCT MATER, 2015, 25, 526-533.
- 98. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, et al, NANO LETT, 2011, 11, 2472-2477.
- 99. Li Z, Wu D, Liang Y, Fu R, Matyjaszewski K, J AM CHEM SOC, 2014, 136, 4805-4808.
- 100. Xie K, Qin X, Wang X, Wang Y, Tao H, et al, ADV MATER, 2012, 24, 347-352.
- 101. Jin Z, Lu A, Xu Y, Zhang J, Li W, ADV MATER, 2014, 26, 3700-3705.
- 102. Zheng X, Luo J, Lv W, Wang D, Yang Q, ADV MATER, 2015, 27, 5388-5395.
- 103. Zheng X, Lv W, Tao Y, Shao J, Zhang C, et al, CHEM MATER, 2014, 26, 6896-6903.
- 104. Singh DK, Krishna KS, Harish S, Sampath S, Eswaramoorthy M, *Angewandte Chemie International Edition*, 2016, 55, 2032-2036.
- 105. Qie L, Chen W, Xu H, Xiong X, Jiang Y, et al, ENERG ENVIRON SCI, 2013, 6, 2497-2504.
- 106. Chen L, Zhang X, Liang H, Kong M, Guan Q, et al, ACS NANO, 2012, 6, 7092-7102.
- 107. Liu S, Cai Y, Zhao X, Liang Y, Zheng M, et al, J POWER SOURCES, 2017, 360, 373-382.