Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Engineering SnS₂ Nanosheet Assemblies for Enhanced Electrochemical Lithium

and Sodium Ion Storage

Yeyun Wang, Junhua Zhou, Jinghua Wu, Fengjiao Chen, Peirong Li, Na Han, Wenjing Huang,

Yuping Liu, Hualin Ye, Feipeng Zhao and Yanguang Li*

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-

Based Functional Materials and Devices, Soochow University, Suzhou 215123, China

*Correspondence to: <u>yanguang@suda.edu.cn</u>

Materials	Specific capacities	Cycle life	Reference
c-SnS ₂ NSA	1200 mAh g ⁻¹ at 0.2A g ⁻¹ 620 mAh g ⁻¹ at 10 A g ⁻¹	99.5% after 300 cycles at 1 A g ⁻¹	This study
SnS ₂ /SnO	998 mAh g ⁻¹ at 0.2 A g ⁻¹ 760 mAh g ⁻¹ at 0.8 A g ⁻¹	66 % after 200 cycles at 0.2 A $\rm g^{\text{-}1}$	J. Mater. Chem. A 2017, 5 , 512
SnS ₂ –NGS	1407 mAh g ⁻¹ at 0.2 A g ⁻¹ 200 mAh g ⁻¹ at 10 A g ⁻¹	73% after 150 cycles at 0.8 A $g^{\text{-1}}$	J. Mater. Chem. A 2016, 4 , 10719
SnS ₂ @RGO	1278 mAh g ⁻¹ at 0.065 A g ⁻¹ 415 mAh g ⁻¹ at 3.2 A g ⁻¹	81% after 200 cycles at 0. 065 A g ⁻¹	J. Mater. Chem. A 2013, 1 , 8658
SnS ₂ NRGO	562 mAh g ⁻¹ at 0.2 A g ⁻¹ 402 mAh g ⁻¹ at 2 A g ⁻¹	97 % after 200 cycles at 0.2 A $g^{\text{-}1}$	ACS Nano 2016, 10, 10778
$SnS_{2/}S/C$	875 mAh g ⁻¹ at 0.84 A g ⁻¹ 200 mAh g ⁻¹ at 8.4 A g ⁻¹	75 % after 300 cycles at 0.84 A $g^{\text{-1}}$	ACS Appl. Mater. Interfaces 2016, 8 , 19550
CC-VN@SnS ₂	819 mAh g ⁻¹ at 0.65 A g ⁻¹ 349 mAh g ⁻¹ at 13 A g ⁻¹	97 % after 100 cycles at 0.65 A g $^{-1}$	ACS Appl. Mater. Interfaces 2015, 7 , 23205
SnS ₂ /g-C ₃ N ₄ / rGO	1284 mAh g ⁻¹ at 0.1 A g ⁻¹ 396 mAh g ⁻¹ at 2 A g ⁻¹	100 % after 276 cycles at 0.1 A g $^{-1}$	RSC Adv. 2017, 7, 3125
SnS ₂ /G-As	656 mAh g ⁻¹ at 0.05 A g ⁻¹ 240 mAh g ⁻¹ at 1 A g ⁻¹	55 % after 30 cycles at 0.05 A $g^{\text{-1}}$	J. Power Sources 2013, 237 , 178

Table S1. Electrochemical performances of SnS₂-based materials previously reported for lithiumion batteries.

Table S2. Electrochemical performances of SnS2-based materials previously reported for sodium-

ion batteries.

Materials	Specific capacities	Cycle life	Reference
c-SnS ₂ NSA	600 mAh g ⁻¹ at 0.5A g ⁻¹ 140 mAh g ⁻¹ at 5 A g ⁻¹	71% after 100 cycles at 0.5 A g ⁻¹	This study
SnS ₂ NGS	608 mAh g ⁻¹ at 0.2A g ⁻¹ 148 mAh g ⁻¹ at 10 A g ⁻¹	74% after 100 cycles at 0.2 A g ⁻¹	J. Mater. Chem. A 2016, 4 , 10719
SnS ₂ /GO	610 mAh g ⁻¹ at 0.05A g ⁻¹ 320 mAh g ⁻¹ at 2 A g ⁻¹	99.6 % after 150 cycles at 0.05 A g ⁻¹	J. Mater. Chem. A 2014, 2 , 8431
SnS ₂ /rGO	469 mAh g ⁻¹ at 0.8A g ⁻¹ 337 mAh g ⁻¹ at 12.8 A g ⁻¹	61 % after 1000 cycles at 0.8A g ⁻¹	Adv. Funct. Mater. 2015, 25 , 481
SnS ₂ /G	650 mAh g ⁻¹ at 0.2 A g ⁻¹ 326 mAh g ⁻¹ at 4 A g ⁻¹	94 % after 300 cycles at 0.2 A $\rm g^{-1}$	Nanoscale 2015, 7, 1325
SnS ₂ /RGO	630 mAh g ⁻¹ at 0.2 A g ⁻¹ 544 mAh g ⁻¹ at 2 A g ⁻¹	95 % after 400 cycles at 1 A g ⁻¹	Adv. Mater. 2014, 26 , 3854
B-SnS ₂	900 mAh g ⁻¹ at 0.2 A g ⁻¹ 400 mAh g ⁻¹ at 10 A g ⁻¹	99 % after 40 cycles at 1 A g ⁻¹	ACS Nano 2016, 10 , 10211
SnS ₂ NWA	576 mAh g ⁻¹ at 0.5 A g ⁻¹ 370 mAh g ⁻¹ at 5 A g ⁻¹	64 % after 100 cycles at 0.5 A $\rm g^{-1}$	ACS Appl. Mater. Interfaces 2017, 10 , 1021
SnS ₂ /C	660 mAh g ⁻¹ at 0.05 A g ⁻¹ 360 mAh g ⁻¹ at 1 A g ⁻¹	86 % after 100 cycles at 0.05 A $\rm g^{-1}$	ACS Appl. Mater. Interfaces 2015, 7 , 11476
FL-SnS ₂ /RGO	843 mAh g ⁻¹ at 0.1A g ⁻¹ 335 mAh g ⁻¹ at 8.4 A g ⁻¹	98 % after 100 cycles at 0.1 A $\rm g^{-1}$	J. Phys. Chem. 2017, 121 , 3261

Figure S1. FT-IR spectrum of as-prepared and annealed SnS₂ NSA.

Figure S2. SEM images of products collected after the solvothermal reaction at 180°C for (a) 1 h, (b) 2 h, (c) 4 h and (d) 6 h.

Figure S3. SEM images of products prepared using (a) water and (b) ethanol as the reaction solvent under otherwise identical conditions.

Figure S4. (a) XRD pattern of $c-SnS_2$ NSA. (b) XPS spectra of $c-SnS_2$ NSA and SnS_2 NSA. (c) TGA curve of $c-SnS_2$ NSA in air.

Figure S5. (a) CV curves of $c-SnS_2$ NSA at diffident scan rates as indicated. (b) Galvanostatic charge and discharge curves of $c-SnS_2$ NSA at 200 mA g⁻¹ for the first three cycles.

Figure S6. Electrochemical impedance spectroscopy (EIS) analysis of (a) $SnS_2 NSA$ and (b) c- $SnS_2 NSA$ at the 1st and 30th cycles. c- $SnS_2 NSA$ consistently showed smaller charge transfer resistance.

Figure S7. SEM images of (a,b) c-SnS₂ NSA and (c,d) SnS₂ NSA before (a,c) and after (b,d) cycling. c-SnS₂ NSA was obviously more resistant to pulverization.

Figure S8. Galvanostatic charge and discharge voltage profiles of c-SnS₂ NSA for (a) LIBs and (b) SIBs under different specific currents as noted.