Supporting Information

Integrated 3D self-supported Ni decorated MoO₂ nanowires as highly efficient electrocatalysts for ultra-highly stable and largecurrent-density hydrogen evolution

Bowen Ren, Dongqi Li, Qiuyan Jin, Hao Cui, * and Chengxin Wang*

State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China

*Corresponding author: Fax: +86-20-8411-3901; e-mail: wchengx@mail.sysu.edu.cn; cuihao3@mail.sysu.edu.cn

Figure S1. Optical photograph of bare CC (left), Mo-Ni-O based precursors (middle),

and Ni-MoO₂-450 NWs/CC (right).

Figure S2. a) Low- and b) high-magnification SEM images of carbon cloth. c) Lowand d) high-magnification SEM images of Mo-Ni-O based precursors. e) XRD pattern of Mo-Ni-O based precursors.

10

20

30

40 50 2θ (degree)

60

70

80

Figure S3. a) Low- and b) high-magnification SEM images of NiMoO₄ NWs/CC. c)

XRD pattern of NiMoO₄ NWs/CC.

Figure S4. a) Low- and b) high-magnification SEM images of Ni-MoO₂-350 NWs/CC. c) Low- and d) high-magnification SEM images of Ni-MoO₂-550 NWs/CC. e) XRD pattern of Ni-MoO₂ NWs/CC annealed at different temperature. f) XRD pattern of Ni-MoO₂-550 NWs/CC with the standard crystallographic spectrum of MoNi (JCPDS 48-1745), Ni (JCPDS 04-0850) and MoO₂ (JCPDS 32-0671).

Figure S5. Exchange current densities for Ni-MoO₂-450 NWs/CC and Pt foil in 1 M KOH, which were calculated from Tafel plots by extrapolation method.

Figure S6. a) SEM image and b) XRD pattern of ETH-Ni-MoO₂-450 NWs/CC.

Figure S7. SEM images of a) CMP-MoO₂/CC, b) CMP-Ni /CC, and c) CMP-Ni-MoO₂/CC. XRD pattern of a) CMP-MoO₂/CC, b) CMP-Ni /CC, and c) CMP-Ni-MoO₂/CC.

Figure S8. Exchange current densities for Ni-MoO₂-450 NWs/CC, ETH-Ni-MoO₂-450 NWs/CC, CMP-Ni-MoO₂/CC, CMP-MoO₂/CC, and CMP-Ni/CC in 1 M KOH, which were calculated from Tafel plots by extrapolation method.

Figure S9. Electrochemically active surface area measurements. CV curves measured from 10 to 80 mV s⁻¹ in 1 M KOH of CV curves measured from 10 to 80 mV s⁻¹ of a) Ni-MoO₂-450 NWs/CC, b) ETH-Ni-MoO₂-450 NWs/CC, c) CMP-Ni-MoO₂/CC, d) CMP-MoO₂/CC, and e) CMP-Ni/CC.

Figure S10. XRD patterns of Ni-MoO₂-450 NWs/CC before and after the multicurrent-step measurement.

Figure S11. Chronoamperometry measurement at a static current density of -500 and -1,000 mA cm⁻² in 1 M KOH for more than 20 hours without *iR* correction.

Materials	Annealing temperature (°C)	Crystallinity	Chemical composition	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)
Ni-MoO ₂ -350 NWs/CC	350	Low	Ni/MoO ₂	56	42
Ni-MoO ₂ -450 NWs/CC	450	Middle	Ni/MoO ₂	40	30
Ni-MoO ₂ -550 NWs/CC	550	High	MoNi/Ni/MoO ₂	55	38

 Table S1. Summary of Ni-MoO2 NWs/CC annealed at different temperature.

Table S2. The HER activities of the Ni-MoO2-450 NWs/CC and reported catalysts in 1 M KOH.

Materials	Onset overpotential (mV)	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
Ni-MoO ₂ -450 NWs/CC	0	40	30	This work
$MoNi_4$ on MoO_2	0	15	30	1
MoS ₂ /Ni ₃ S ₂	50	110	83	2
Ni(OH) ₂ /MoS ₂	20	80	60	3
MoC-Mo ₂ C	33	120	42	4
Ni-MoC	-	123	83	5
MoP	50	130	48	6
Ni ₂ P/Ni	41	~75	50	7
N,P-doped Mo ₂ C@carbon				
nanospheres	0	50	71	8
NiMoN	50	109	95	9
Ni-WN	0	47	71	10
Co/Co ₃ O ₄	30	~90	44	11

References

- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech and X. Feng, *Nat. Commun.*, 2017, 8, 15437.
- 2 J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, *Angew. Chem. Int. Ed.*, 2016, **55**, 6702–6707.
- 3 B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao and J. Jiang, *Nano Energy*, 2017, **37**, 74–80.
- 4 H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao and Y. Tang, Chem Sci, 2016, 7, 3399–3405.
- 5 X. Xu, F. Nosheen and X. Wang, Chem. Mater., 2016, 28, 6313–6320.
- 6 P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.-Y. Wang, K. H. Lim and X. Wang, *Energy Env. Sci*, 2014, **7**, 2624–2629.
- 7 Y. Shi, Y. Xu, S. Zhuo, J. Zhang and B. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 2376– 2384.
- 8 Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai, L.-J. Wan and J.-S. Hu, ACS Nano, 2016, 10, 8851–8860.
- 9 Y. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat and H. J. Fan, *Adv. Energy Mater.*, 2016, 6, 1600221.
- 10 Z. Xing, D. Wang, Q. Li, A. M. Asiri and X. Sun, *Electrochimica Acta*, 2016, 210, 729–733.
- 11 X. Yan, L. Tian, M. He and X. Chen, Nano Lett., 2015, 15, 6015-6021.