Supplementary Information

Solar-charged Photoelectrochemical Wastewater Fuel Cell for Efficient and Sustainable Hydrogen Production

Zhaoyu Zhou, [‡]a Zhongyi Wu, [‡]a Qunjie Xu*^b and Guohua Zhao*^a

^a School of Chemical Science and Engineering, Shanghai Key Lab of Chemical

Assessment and Sustainability, Tongji University, Shanghai, 200092, People's

Republic of China.

^b Shanghai Key Laboratory of Materials Protection and Advanced Materials in

Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.

E-mail address: g.zhao@tongji.edu.cn

E-mail address: xuqunjie@shiep.edu.cn

[‡]These authors are co-first authors and contributed equally to this work.

Calculation of photocarrier density

The photocarrier density was calculaed by the equation

$$\frac{1}{C^2} = \frac{2}{NDe\varepsilon\varepsilon_0} \left(E_{\rm S} - E_{\rm FB} - \frac{kT}{e} \right)$$
(1)
$$N_D = \frac{2}{e\varepsilon_0\varepsilon} \left(\frac{dE}{d\left(\frac{1}{c^2}\right)} \right)$$
(2)

where, C is the space charge capacity of the semiconductor material, e is the element charge quantity (1.6×10^{-19} C), ND is the carrier density, ε_0 is the vacuum dielectric constant (8.86×10^{-12} F m⁻¹), ε is the relative permittivity of the WO₃ nanostructures (avalue of 50 has been assumed for the WO₃), E_s is the applied potential, E_{FB} is the flat band potential, T is absolute temperature and k is Boltzmann's constant (1.38×10^{-23} J K⁻¹). Thus, the equation of ND can be described as follow:

Figure.S1. Mott-Schottky plots of WO₃ NFs/W electrode measured in 0.1 mol L^{-1} Na₂SO₄ solution with a frequency of 1000 Hz and scan rate of 0.01 V·s⁻¹.

Fig.S2.The working mode diagram of scPEWFC system for simultaneous pollutant removal and hydrogen production under the photocharging-discharging process.

Fig. S3 The relative band positions for the WO₃ NFs-C/Cu₂O NWAs visible-light response dual-photoelectrodes

Figure.S4. The Nyquist curve of different anodizing time prepared WO₃ NFs electrode by using the two-electrode system without any bias in the $0.1 \text{ mol } L^{-1} \text{ Na}_2\text{SO}_4$ solution containing 20 mg L^{-1} phenol.

Parameters	50min	60min	70min	80min	90min
$V_{OC}(V)$	0.24	0.26	0.25	0.24	0.24
J_{SC} (mA·cm ⁻²)	0.33	0.42	0.44	0.40	0.36
P _{max} (mW·cm ⁻²)	0.011	0.014	0.015	0.013	0.011
FF	0.139	0.128	0.136	0.135	0.127
TOC (%)	77.53	80.51	82.12	79.93	78.01
H_2 (µmol·cm ⁻²)	80.67	87.15	93.08	85.65	82.41

Table S1. The photoelectrochemical performance, TOC removal and hydrogenproduction of scPEWFC.

Table S2. The WO₃ NFs/W-C/Cu₂O NWAs/Cu scPEWFC performance parameters in different concentrations of electrolyte solution.

Parameters	0.01mol L ⁻¹	0.05 mol L ⁻¹	0.1 mol L ⁻¹	0.5 mol L ⁻¹
J _{SClight} (mA cm ⁻²)	0.482	0.488	0.523	0.589
J _{SCdark} (mA cm ⁻²)	0.067	0.075	0.098	0.080
$H_{2 \text{ light}}(\mu \text{mol cm}^{-2})$	78.97	81.15	85.58	80.89
$H_{2 \text{ dark}}(\mu \text{mol cm}^{-2})$	6.23	6.71	7.50	7.15