Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Hierarchical 1T-MoS₂ Nanotubular Structures for Enhanced

Supercapacitive Performance

Shuang Yang,^{a‡} Ke Zhang,^{a,b‡} Changda Wang,^a Youkui Zhang,^{a,c} Shuangming Chen,^a Chuanqiang Wu,^a Anthony Vasileff,^b Shi Zhang Qiao^{b,d*} and Li Song^{a*}

 ^a National Synchrotron Radiation Lab, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China.
^b School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
^c School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

^d School of Materials Science and Engineering, Tianjin University, Tianjin 300072,

China

*E-mail: s.qiao@adelaide.edu.au; song2012@ustc.edu.cn

[‡]S. Yang and K. Zhang contributed equally to this work

Fig. S1 (a) SEM image and (b) XRD pattern of the as-prepared MoO₃ nanobelts.

Fig. S2 (a) SEM image of the as-prepared 1T-MoS $_2$; (b) XRD patterns of as-prepared 1T-MoS $_2$ and annealed 1T-MoS $_2$.

Fig. S3 S 2p XPS spectrums of as-prepared 1T-MoS₂ and annealed 1T-MoS₂.

Fig. S4 Fitting curves for EXAFS data of the Mo K-edge for commercial MoS_2 , annealed $1T-MoS_2$ and as-prepared $1T-MoS_2$.

Fig. S5 (a) Nitrogen adsorption-desorption isotherm and (b) pore diameter distribution of as-prepared 1T-MoS₂, annealed 1T-MoS₂ and commercial MoS₂.

Fig. S6 (a) Specific capacitances for a current density range from 6 to 15 A g⁻¹, (b) CV curves for a scan rate range from 100 to 1000 mV s⁻¹, and (c) GCD profile for a current density range from 6 to 10 A g⁻¹ for the as-prepared 1T-MoS₂ tested in a three-electrode system.

Fig. S7 (a) Specific capacitances for a current density range from 6 to 15 A g⁻¹, (b) CV curves for a scan rate range from 100 to 1000 mV s⁻¹, and (c) GCD profiles for a current density range from 6 to 10 A g⁻¹ for the as-prepared 1T-MoS₂ tested in a two-electrode system.

Fig. S8 CV curves and GCD profiles for the (a, b) annealed 1T-MoS₂, and (c, d) commercial MoS₂, measured using a three-electrode system.

Fig. S9 CV curves and GCD profiles for the (a, b) annealed 1T-MoS₂, and (c, d) commercial MoS₂, measured using a two-electrode symmetrical cell.

Table S1 Local structural parameters for Mo and S atoms in commercial MoS2,annealed 1T-MoS2 and as-prepared 1T-MoS2 fitted from EXAFS data. R is the lengthof bond, N is the coordination number and σ^2 is Debye-Waller factor.

Sample	Path	R (Å)	Ν	σ² (10 ⁻³ Å)
Commercial MoS ₂	Mo-S	2.41	6	3.6
	Mo-Mo	1.37	6	3.1
Annealed 1T-MoS ₂	Mo-S	2.41	4.7	3.7
	Mo-Mo	3.16	3.7	5.4
1T-MoS ₂	Mo-S	2.38	3.8	9.2
	Mo-Mo	2.76	1.5	10.7

Table S2 Synthesis conditions and specific capacitances comparisons of variousmaterials reported from references with our obtained 1T- MoS2.

Materials	Synthesis Method	Specific Capacitance	Electrolyte	Ref.
MoS ₂ nanosheet	Hydrothermal	129.2 F/g (1 A/g)	1 M Na ₂ SO ₄	1
MoS ₂ nanosheet	Hydrothermal	8 mF/cm ²	$1 \text{ M Na}_2 \text{SO}_4$	2
MoS ₂ nanosheet	Hydrothermal	92 F/g (0.5 mA/cm ²)	1 M Na ₂ SO ₄	3
MoS ₂ nanosphere	Hydrothermal	122 F/g (1 A/g)	1 M KCl	4
2D MoS₂ on graphene oxide	Microwave Heating	265 F/g (10 mV/s)	1 M HClO ₄	5
Flower-like MoS ₂	Hydrothermal	168 F/g (1 A/g)	1 M KCl	6
MoS₂ nanosheet on Mo foil	Hydrothermal	192.7 F/g (1 mA/cm²)	$1 \text{ M Na}_2 \text{SO}_4$	7
MoS ₂ nanosheet	Solvothermal	231 F/g (1 A/g)	$1 \text{ M Na}_2 \text{SO}_4$	8
MoS ₂ nanosheet	Solvothermal	348 F/g (1 A/g)	$1 \text{ M H}_2\text{SO}_4$	This work

Materials	Synthesis Method	Specific Capacitance	Electrolyte	Ref.
CoS ₂	Microwave- mediated	119 F/g (1 A/g)	1 M LiPF ₆ - based	9
CoS ₂	Hydrothermal	236.5 F/g (1A/g)	2 M KOH	10
NiS ₂ /NiS	Hydrothermal	717 F/g (0.6 A/g)	3 М КОН	11
NiS ₂	Microwave- assisted	695 F/g (1.25 A/g)	3 М КОН	12
NiS ₂ /graphene	Solvothermal	426 F/g (1A/g)	6 M KOH	13
MnS ₂	Hydrothermal	471 F/g (0.5 mA/cm²)	-	14
SnS ₂	Solvothermal	216 F/g (0.38 A/g)	1 M KCl	15
WS ₂	Hydrothermal	2813 μF/g (0.5 A/m²)	$1 \text{ M H}_2\text{SO}_4$	16
VS ₂	Chemical exfoliating	4760 μF /cm² (0.1 A/m²)	BM1MBF ₄ - PVA	17
VS ₂	Hydrothermal	155 F/g (1 mA/cm ²)	6 М КОН	18
MoS ₂ nanosheet	Solvothermal	348 F/g (1 A/g)	1 M H ₂ SO ₄	This work

Table S3 Synthesis conditions and specific capacitances comparisons of various metal disulfides reported from references with our obtained 1T- MoS₂.

Supplementary References

- 1. K.-J. Huang, J.-Z. Zhang, G.-W. Shi and Y.-M. Liu, *Electrochim. Acta*, 2014, **132**, 397-403.
- 2.Y. Gao, Y. S. Zhou, M. Qian, X. N. He, J. Redepenning, P. Goodman, H. M. Li, L. Jiang and Y. F. Lu, *Carbon*, 2013, **51**, 52-58.
- 3. K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan and S. J. Kim, *Mater. Res. Bull.*, 2014, **50**, 499-502.
- X. Zhou, B. Xu, Z. Lin, D. Shu and L. Ma, J. nanosci. nanotechnol., 2014, 14, 7250-7254.
- 5. E. G. da Silveira Firmiano, A. C. Rabelo, C. J. Dalmaschio, A. N. Pinheiro, E. C. Pereira, W. H. Schreiner and E. R. Leite, *Adv. Energ. Mater.*, 2014, **4**.
- R. Wang, C. Xu, J. Sun, Y. Liu, L. Gao, H. Yao and C. Lin, *Nano Energy*, 2014, 8, 183-195.
- K. Krishnamoorthy, G. K. Veerasubramani, P. Pazhamalai and S. J. Kim, *Electrochim.* Acta, 2016, 190, 305-312.
- 8. H. Xiao, S. Wang, S. Zhang, Y. Wang, Q. Xu, W. Hu, Y. Zhou, Z. Wang, C. An and J. Zhang, *Mater. Chem. Phys.*, 2017, **192**, 100-107.
- S. Amaresh, K. Karthikeyan, I.-C. Jang and Y. Lee, J. Mater. Chem. A, 2014, 2, 11099-11106.
- 10. J.-C. Xing, Y.-L. Zhu, Q.-W. Zhou, X.-D. Zheng and Q.-J. Jiao, *Electrochim. Acta*, 2014, **136**, 550-556.
- C. Wei, C. Cheng, Y. Cheng, Y. Wang, Y. Xu, W. Du and H. Pang, *Dalton Trans.*, 2015, 44, 17278-17285.
- 12. H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, J. Chen and J. Zhang, Sci. Rep., 2014, 4, 3577.
- 13. X. Li, J. Shen, N. Li and M. Ye, *Mater. Lett.*, 2015, **139**, 81-85.
- 14. T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao and F. Gao, *Sci. Rep.*, 2016, **6**, 23289.
- 15. R. K. Mishra, G. W. Baek, K. Kim, H.-I. Kwon and S. H. Jin, *Appl. Surf. Sci.*, 2017, **425**, 923-931.
- 16. A. Khalil, Q. Liu, Q. He, T. Xiang, D. Liu, C. Wang, Q. Fang and L. Song, *RSC Adv.*, 2016, *6*, 48788-48791.
- 17. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang and Y. Xie, *J. Am. Chem. Soc.*, 2011, **133**, 17832-17838.
- 18. T. M. Masikhwa, F. Barzegar, J. K. Dangbegnon, A. Bello, M. J. Madito, D. Momodu and N. Manyala, *RSC Adv.*, 2016, **6**, 38990-39000.