Supporting Information

Potassium ferrous ferricyanide nanoparticles as high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries

Shaokun Chong,^a Yuanzhen Chen,^a Yang Zheng,^b Qiang Tan,^a Chengyong Shu,^a Yongning

Liu*a and Zaiping Guob

^a State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China

^b Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW 2500, Australia

^{*} Corresponding author. Tel: +86-29-8266-4602; fax: +86-29-8266-3453 *E-mail address*: ynliu@mail.xjtu.edu.cn (Yongning Liu)

Table S1 Element contents of KFFCN.

Fig. S1 TG and DSC curves of KFFCN measured at a heating rate of 10 °C min⁻¹ in nitrogen.

Fig. S2 a) Nitrogen adsorption-desorption isotherm of KFFCN; b) micropore size distribution;

c) mesoporous size distribution.

Fig. S3 SEM images of KFFCN at different magnification.

Fig. S4 EDS mapping images of KFFCN.

Fig. S5 Discharge operating voltage curve of KFFCN at 100 mA·g⁻¹ upon cycling.

Fig. S6 Ex situ a) XPS survey spectrum; b) Fe 2p spectrum after the first cycle.

Fig. S7 a) the second charge/discharge profile at 100 mA·g⁻¹; b) ex situ XRD patterns at different states during the second cycle.

Fig. S8 a) GITT curves of the first cycle and corresponding b) K-ions diffusion coefficient $(D\kappa^{+})$ between 2.0 and 4.5 V.

Fig. S9 Ex situ SEM image of KFFCN after a) 100 cycles and b) 1000 cycles.

Fig. S10 Ex situ TEM image of KFFCN after 1000 cycles.

Fig. S11 Ex situ XRD patterns after 100 and 1000 for KFFCN.

Fig. S12 Ex situ HRTEM image of single nano-particle for 100 cycled KFFCN.

Table S2 Comparison of the cycle life of some cathode materials for the nonaqueous

Current density	Initial capacity	Cycle numbers	Capacity
$(mA \cdot g^{-1})$	$(mAh \cdot g^{-1})$		retention (%)
10	118.7	100	93.73
100	90.7	1000	80.49
50	76.7	50	95.44
200	60.6	150	86.50
300	51.7	150	86.50
100	120.0	300	65.00
1C	57.8 (1st)	100	147.23
	108.7 (20th)		78.29
30	116.6 (1st)	100	110.63
	137.0 (5th)		94.16
20	178.0	45	70.00
100	114.0	60	89.00
200	94.0	45	96.00
500	77.1	200	85.00
100	48.0	120	60.00%
5	140	20	33.6
3,4,9,10 perylene–tetracarboxylicacid– dianhydride ⁸ 10	130.0	200	69.23%
10	131.8	300	47.80
	Current density (mA·g ⁻¹) 10 100 50 200 300 100 1C 30 20 100 200 500 100 200 500 100 200 500 100 200 500	Current density (mA·g ⁻¹) Initial capacity (mAh·g ⁻¹) 10 118.7 100 90.7 50 76.7 200 60.6 300 51.7 100 120.0 100 120.0 100 120.0 100 120.0 101 100.7 100 120.0 100 120.0 100 120.0 100 120.0 100 120.0 101 108.7 (20th) 100 114.0 200 94.0 500 77.1 100 48.0 5 140 10 130.0 10 131.8	Current density (mA·g ⁻¹)Initial capacity (mAh·g ⁻¹)Cycle numbers10118.710010090.7100010090.710005076.75020060.615030051.7150100120.0300100120.0300100120.0300100120.0300100120.030020178.010020178.045100114.06020094.04550077.120010048.012010130.020010131.8300

potassium ion batteries.

References:

- 1. C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong, M. Wu, Y. Yang and Y. Lei, *Adv. Funct. Mater.*, 2016, 1604307.
- 2. G. He and L. F. Nazar, *ACS Energy Lett.*, 2017, **2**, 1122-1127.
- 3. L. Xue, Y. Li, H. Gao, W. Zhou, X. Lü, W. Kaveevivitchai, A. Manthiram and J. B. Goodenough, *J. Am. Chem. Soc.*, 2017, **139**, 2164-2167.
- 4. X. Bie, K. Kubota, T. Hosaka, K. Chihara and S. Komaba, *J. Mater. Chem. A*, 2017, **5**, 4325-4330.
- 5. X. Wang, X. Xu, C. Niu, J. Meng, M. Huang, X. Liu, Z. Liu and L. Mai, *Nano Lett.*, 2016, **17**, 544.
- 6. H. Kim, J. C. Kim, S. H. Bo, T. Shi, D. H. Kwon and G. Ceder, *Adv. Energy Mater.*, 2017, 1700098.
- 7. H. Kim, D. H. Seo, J. C. Kim, S. H. Bo, L. Liu, T. Shi and G. Ceder, *Adv. Mater.*, 2017, 1702480.
- 8. Y. Chen, W. Luo, M. Carter, L. Zhou, J. Dai, K. Fu, S. Lacey, T. Li, J. Wan and X. Han, *Nano Energy*, 2015, **18**, 205-211.
- 9. Z. Xing, Z. Jian, W. Luo, Y. Qi, C. Bommier, E. S. Chong, Z. Li, L. Hu and X. Ji, *Energy Storage Mater.*, 2016, **2**, 63-68.