Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Fig. S1. Sheet resistance of the 2H and $1T exMoS_2$ films

Fig. S2. N_2 isotherms with the calculated specific surface area (as given in the inset table) and average pore volume of the prepared films (ex.MoS₂ film and the e.ex.MoS₂-CNT film in the hetero-configuration)

Fig. S3 a) Impedance spectra of (L)_*e*.ex.MoS₂-CNT in hetero and tandem configurations; b) Impedance spectra of (L)_*e*.ex.MoS₂-CNT and (S)_*e*.ex.MoS₂-CNT in the tandem configuration bifunctional separators. (R_s : solution resistance, R_f : film resistance, R_{ct} : charge transfer resistance, C_f : film capacitance, C_{dl} : double layer capacitance)

Fig. S4. SEM images of a) Celgard separator, b) CNT coated separator, c) *e*.ex.MoS₂ at 1V coated separator, and d) *e*.ex.MoS₂ and CNT mixture-coated separator

Fig. S5. SEM images of the bifunctional separators coated with a) *e*.ex. MoS₂ at 1V large size (L), b) *e*.ex.MoS₂ at 1V small size (s)

Fig. S6. Thermogravimetric analysis of the CNT-S composite for the electrochemical tests (denoted as CNT-S 80)

Fig. S7. The analysis on the electrochemical performances of the samples in order to understand the synergistic effects on the soluble polysulfide- and the insoluble polysulfide-originated capacities.