Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

TiO₂-rGO nanocomposite hollow spheres: Large scale synthesis and application as an efficient anode material for lithium-ion batteries

Aniruddha Mondal,^a Sandipan Maiti,^b Krishnadipti Singha,^a Sourindra Mahanty*^b and Asit Baran Panda*^a

^a Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) and CSMCRI- Academy of Scientific and Innovative Research, G. B. Marg, Bhavnagar-364002, Gujarat, India. *E-mail: abpanda@csmcri.org.

^b CSIR-Central Glass & Ceramic Research Institute, Raja S. C. Mullick Road, Kolkata-700032, India. *Email: mahanty@cgcri.res.in

Supporting Figures

Fig. S1 XRD pattern of as-spray dried titanium based material with 10% GO.

Fig. S2 XRD pattern of pure GO.

Fig. S3 SEM image of calcined TiO₂-pristine.

Fig. S4 SEM image of calcined TiO₂-rGO (10%).

Fig. S5 HR-TEM image of calcined TiO₂-pristine.

Fig. S6 TEM image of calcined TiO₂-rGO (10%).

Fig. S7 N₂ sorption isotherm (a) and corresponding pore size distribution (b) curves of the calcined TiO₂pristine sample.

Fig. S8 Current vs voltage (I-V) plots for TiO₂-Pristine, TiO₂-rGO (10%) and TiO₂-rGO (20%).

Fig. S9 Variation of specific capacity with mass loading in the electrodes for RGO@TiO₂ (10%)

Fig. S10 Specific charge capacity vs. current density plots for TiO₂-RGO (10%) electrodes with different mass loading

Scheme S1 Schematic representation of probable Li⁺ storage mechanism.

Supporting Tables

Materials	Methods of Syntheis	Voltage (V vs. Li/Li ⁺)	Current Density (mA g ⁻¹)	Specific Capacity (mAh g ⁻¹)	Cycling Performances	Ref.
TiO ₂ hollow spheres	Sol-gel method, carbon sphere used as template	1.0-2.5	60	139	40	S^1
TiO ₂ hollow spheres	Templated method using polystyrene spheres.	1.0-3.0	35.5	230	50	S ²
TiO ₂ hollow spheres	Hydrothermal followed by calcination.	1.0-2.75	168	~56	50	S ³
TiO ₂ hollow spheres	Solvothermal method.	1.0-3.0	33.6 672	~170 ~80		S^4
Core-shell TiO ₂ microsphere	Solvothermal followed by calcination.	1.3-2.5	175	154	80	S ⁵
TiO ₂ hollow spheres	Solvothermal method.	1.0-3.0	85	131	30	S^6
Multishelled TiO ₂ hollow microspheres	Emulsion polymerization reaction under hydrothermal conditions.	1.0-3.0	168 1675	237 119	100 1200	S ⁷
TiO ₂ hierarchically porous hollow spheres	Hydrothermal method staring with TiO_2 solid spheres.	1.0-3.0	168	151	200	S ⁸
TiO ₂ /C hierarchically porous hollow spheres	Hydrothermal method starting with TiO ₂ solid spheres.	1.0-3.0	168	175	200	S ⁹
Nest-like TiO ₂ hollow microspheres	Hydrothermal method staring with TiO ₂ hollow microspheres.	1.0-3.0	2010	152	100	S ¹⁰
TiO ₂ hollow nanospheres	Template method using quasi- nano-sized carbonaceous sphere followed by calcination.	1.0-3.0	167.5 3350	212 103	100 3000	S ¹¹
TiO ₂ –Carbon hollow microspheres	Solvothermal followed by calcination.	1.0-2.5	168 3360	204 105		S ¹²
F-doped carbon coated mesoporous TiO ₂ hollow spheres	Hydrolysis over polystyrene nano sphere followed by hydrothermal.	1.0-3.0	84 1680	210 98	100 1800	S ¹³
Hollow TiO ₂ /graphitic carbon spheres	Reflux over SiO_2 templet followed by calcination.	1.2-2.5	100 1000	178 137	100 1000	S ¹⁴
TiO ₂ -rGO (10%) hollow sphere	Spray drying followed by calcination.	1.0-3.0	18.8 94 188 374 940 3740	265 216 175 166 131 109	 200 800 	This Work

Table S1. A comparison of electrochemical results on TiO_2 /carbon hollow spheres.

Materials	Voltage (V vs. Li/Li ⁺)	Current Density (mA g ⁻¹)	Specific Capacity (mAh g ⁻¹)	Cycling Performances	Ref.
TiO ₂ -graphene nanofibers	1.0-3.0	150	131	300	S^{15}
Reduced graphene oxide-supported TiO ₂ fiber bundles	0.1-3.0	200 1000	235 150	1000	S ¹⁶
High performance N-doped mesoporous carbon decorated TiO_2 nanofibers	1.0-3.0	33	264	100	S ¹⁷
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.0-3.0	850	150	100	S ¹⁸
Sandwich like graphene-TiO ₂ nanosheets	1.0-3.0	167.5	180	30	S ¹⁹
Mesoporous anatase TiO ₂ nanospheres/graphene composites	1.0-3.0	168	199	100	S ²⁰
Porous TiO ₂ /C nanocomposite shells	1.0-3.0	335	171	330	S ²¹
TiO ₂ /graphene nanostructured composite	1.0-3.0	167.5	180	100	S ²²
Carbon–TiO ₂ composite (TC400)	0.9-3.0	75	153	30	S ²³
Porous TiO ₂ microsphere/RGO composite	1.0-3.0	168	180	100	S ²⁴
TiO ₂ and reduced graphene oxide nanocomposite	0.01-3.0	100	200	100	S ²⁵
TiO ₂ -CNT sponges	0.0-3.0	100	210	100	S ²⁶
Mesoporous TiO ₂ nanocrystals grown in situ on graphene aerogels	1.0-3.0	100	200	50	S ²⁷
Mesoporous TiO ₂ /graphene/mesoporous TiO ₂ sandwich-like nanosheets	1.0-3.0	20	237	100	S ²⁸
Ultrafine TiO ₂ nanoparticles embedded in N-doped graphene networks (UTO/NGF)	1.0-3.0	168 840	165 143	200	S ²⁹
Carbon-coated mesoporous TiO_2 nanocrystals grown on graphene	1.0-3.0	200	110	100	S ³⁰
TiO ₂ /GO nanocomposite (SP20)	1.0-3.0	336	150	50	S ³¹
Ultra-small TiO ₂ nanoparticles in situ growth on graphene hybrid	0.0-3.0	100	186.6	100	S ³²
Randomly oriented carbon-supported ultra-thin anatase TiO_2	1.0-3.0	170	172	100	S ³²

 $\label{eq:table S2.} A \ comparison \ of \ electrochemical \ results \ on \ TiO_2/carbon \ in \ different \ morphological \ shapes.$

State of charge (V)	R _s (Ohm)	R _{ct} (Ohm)					
TiO ₂ -Pristine							
As assembled state	2.1	158					
After 1 st cycle	3.0	502					
After 200th cycle	139	341					
TiO ₂ -rGO (10%)							
As assembled state	2.0	144					
After 1st cycle	2.2	462					
After 200th cycle	76.5	341					
TiO ₂ -rGO (20%)							
As assembled state	1.9	163					
After 1 st cycle	2.1	279					
After 200 th cycle	31.3	148					

Table S3. Fitted impedance parameters for TiO₂-Pristine, TiO₂-rGO (10%) and TiO₂-rGO (20%).

References:

- 1 J. Wang, Y. Bai, M. Wu, J. Yin and W. F. Zhang, J. Power Sources, 2009, 191, 614–618.
- 2 L. Xiao, M. Cao, D. Mei, Y. Guo, L. Yao, D. Qu and B. Deng, J. Power Sources, 2013, 238, 197–202.
- N. Sutradhar, S. K. Pahari, M. Jayachandran, A. M. Stephan, J. R. Nair, B. Subramanian, H. C. Bajaj,
 H. M. Mody and A. B. Panda, *J. Mater. Chem. A*, 2013, 1, 9122.
- 4 S. Ding, T. Lin, Y. Wang, X. Lü and F. Huang, New J. Chem., 2013, 37, 784.
- 5 H. Guo, D. Tian, L. Liu, Y. Wang, Y. Guo and X. Yang, J. Solid State Chem., 2013, 201, 137–143.
- 6 L. Long, H. Zhang, M. Ye and Z. Fang, *RSC Adv.*, 2015, **5**, 12224–12229.
- H. Ren, R. Yu, J. Wang, Q. Jin, M. Yang, D. Mao, D. Kisailus, H. Zhao and D. Wang, *Nano Lett.*, 2014, 14, 6679–6684.
- 8 J. Jin, X.-N. Ren, Y. Lu, X.-F. Zheng, H.-E. Wang, L.-H. Chen, X.-Y. Yang, Y. Li and B.-L. Su, *RSC Adv.*, 2016, 6, 70485–70492.
- Z. Wang, F. Zhang, H. Xing, M. Gu, J. An, B. Zhai, Q. An, C. Yu and G. Li, *Electrochim. Acta*, 2017, 243, 112–118.
- H. Ren, J. Sun, R. Yu, M. Yang, L. Gu, P. Liu, H. Zhao, D. Kisailus and D. Wang, *Chem. Sci.*, 2016, 7, 793–798.
- 11 Z. Jin, M. Yang, J. Wang, H. Gao, Y. Lu and G. Wang, Chem. A Eur. J., 2016, 22, 6031–6036.

- 12 H. Geng, H. Ming, D. Ge, J. Zheng and H. Gu, *Electrochim. Acta*, 2015, 157, 1–7.
- 13 H. Liu, W. Li, D. Shen, D. Zhao and G. Wang, J. Am. Chem. Soc., 2015, 137, 13161–13166.
- X. Zhang, P. Suresh Kumar, V. Aravindan, H. H. Liu, J. Sundaramurthy, S. G. Mhaisalkar, H. M.
 Duong, S. Ramakrishna and S. Madhavi, *J. Phys. Chem. C*, 2012, **116**, 14780–14788.
- 15 G. Gu, J. Cheng, X. Li, W. Ni, Q. Guan, G. Qu and B. Wang, J. Mater. Chem. A, 2015, 3, 6642–6648.
- 16 M.-H. Ryu, K.-N. Jung, K.-H. Shin, K.-S. Han and S. Yoon, J. Phys. Chem. C, 2013, 117, 8092–8098.
- 17 W. Cheng, F. Rechberger, D. Primc and M. Niederberger, *Nanoscale*, 2015, 7, 13898–13906.
- 18 S. Yang, X. Feng and K. Müllen, *Adv. Mater.*, 2011, **23**, 3575–3579.
- 19 N. Li, G. Liu, C. Zhen, F. Li, L. Zhang and H.-M. Cheng, Adv. Funct. Mater., 2011, 21, 1717–1722.
- W. Wang, Q. Sa, J. Chen, Y. Wang, H. Jung and Y. Yin, ACS Appl. Mater. Interfaces, 2013, 5, 6478–6483.
- 21 X. Xin, X. Zhou, J. Wu, X. Yao and Z. Liu, ACS Nano, 2012, 6, 11035–11043.
- 22 S. K. Das, M. Patel and A. J. Bhattacharyya, ACS Appl. Mater. Interfaces, 2010, 2, 2091–2099.
- C. Zha, D. He, J. Zou, L. Shen, X. Zhang, Y. Wang, H. H. Kung and N. Bao, *J. Mater. Chem. A*, 2014, 2, 16931–16938.
- J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao and S. Zhang, ACS Appl. Mater. Interfaces, 2012, 4, 3636–3642.
- M. Zou, Z. Ma, Q. Wang, Y. Yang, S. Wu, L. Yang, S. Hu, W. Xu, P. Han, R. Zou and A. Cao, J.
 Mater. Chem. A, 2016, 4, 7398–7405.
- 26 B. Qiu, M. Xing and J. Zhang, J. Am. Chem. Soc., 2014, 136, 5852–5855.
- 27 Z. Wang and X. W. D. Lou, *Adv. Mater.*, 2012, 24, 4124–4129.
- 28 X. Jiang, X. Yang, Y. Zhu, H. Jiang, Y. Yao, P. Zhao and C. Li, J. Mater. Chem. A, 2014, 2, 11124.
- 29 Z. Zhang, L. Zhang, W. Li, A. Yu and P. Wu, ACS Appl. Mater. Interfaces, 2015, 7, 10395–10400.
- 30 Y. Qiu, K. Yan, S. Yang, L. Jin, H. Deng and W. Li, ACS Nano, 2010, 4, 6515–6526.
- H. Liu, K. Cao, X. Xu, L. Jiao, Y. Wang and H. Yuan, ACS Appl. Mater. Interfaces, 2015, 7, 11239–
 11245.
- 32 J. S. Chen, H. Liu, S. Z. Qiao and X. W. (David) Lou, J. Mater. Chem., 2011, 21, 5687.