Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Thin MoS₂ nanosheets grafted MOFs derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting

Dongxiao Ji, Shengjie Peng, * Li Fan, Linlin Li, Xiaohong Qin, * and Seeram Ramakrishna*

* Email: seeram@nus.edu.sg; seeram@nus.edu.sg; mpepeng@nus.edu.sg

Fig. S1 Mass production of PAN nanofiber through Free-surface electrospinning

Fig. S2 XRD pattern of as-prepared ZIF-L grown on PAN nanofiber.

Fig. S3 a) TEM image of CoNC/CNF carbonized in N_2 at 800 °C. b) the corresponding XRD pattern of CoNC/CNF-800.

Fig. S4 a) SEM and b) TEM images of as-prepared MoS_2/CNF .

Fig. S5 TEM showing Co particle size and morphology

Fig. S8 Data survey spectra of CoNC/CNF film.

Fig. S9 a-b) SEM images of CoNC/CNF carbonized in N_2 at 700 °C. c) Corresponding TEM image. d) XRD pattern of CoNC/CNF-700.

Fig. S10 a-b) SEM images of CoNC/CNF carbonized in N_2 at 900 °C. c) Corresponding TEM image. d) XRD pattern of CoNC/CNF-900.

Fig. S11 The comparison of the HER performance when using Pt counter and graphite rod counter, respectively.

Fig. S12 The HER LSV curves of CoNC/CNF obtained from 700 °C, 800 °C and 900 °C.

Fig. S13 The OER LSV curves of CoNC/CNF obtained from 700 °C, 800 °C and 900 °C.

Fig. S14 The HER and OER performances of CoNC/CNF obtained from 700 °C, 800 °C and 900 °C.

Fig. S15 SEM images of CoNC@MoS₂ obtained from different mass ratio between $(NH_4)_2MoS_4$ and CoNC/CNF. a, b) 0.2:1, c, d) 0.5:1 and e, f) 1:1.

Fig. S16 The HER performances of $CoNC@MoS_2$ obtained from different mass ratio between $(NH_4)_2MoS_4$ and CoNC/CNF.

Fig. S17 The OER performances of $CoNC@MoS_2$ obtained from different mass ratio between $(NH_4)_2MoS_4$ and CoNC/CNF.

Fig. S18 HER EIS and Corresponding equivalent circuit that fits the electrochemical impedance spectroscopy (EIS) data for HER: a) CoNC/CNF, b) CoNC@MoS2 and c) MoS2/CNF.

Fig. S19 CVs and Cdl of CoNC@MoS2/CNF, CoNC/CNF and MoS₂/CNF, respectively.

A high contact area between the catalysts and electrolyte is favorable for a high catalytic activity. To estimate the effective surface areas of the obtained samples, the C_{dl} at the solid–liquid interface is measured by CV. The CVs are evaluated in the potential range from 0.06 V to 0.16 V vs. RHE, where the current responses are only generated from the charging of the double-layers. The double-layer charging current as a function of the scan rate is plotted, and the slopes are calculated as the C_{dl}. As can be seen, the C_{dl} of CoNC@MoS₂/CNF is 64 mF cm⁻², which is almost three times more than the C_{dl} of CoNC/CNF (22 mF cm⁻²). The electrochemically active surface area (ECSA) is proportional to the C_{dl} of the materials. Due to the growth of abundant thin MoS₂ on CoNC flakes, CoNC@MoS₂/CNF and MoS₂/CNF catalysts, again confirms the superiority of the thin MoS₂ grown on CoNC flakes hybrid structure to achieve high catalytic activities for electrochemical reactions.

Fig. S20 The long-term stability performance of CoNC@MoS₂ for HER.

Fig. S21 Corresponding equivalent circuit that fits the electrochemical impedance spectroscopy (EIS) data for OER: a) CoNC/CNF, b) CoNC@MoS₂ and c) MoS_2/CNF .

Fig. S22 The long-term stability performance of CoNC@MoS₂ for OER.

Fig. S23 Data survey spectra of initial electrode, after OER electrode and after HER electrode.

Catalyst	η_{10mV}	Tafel slope	Electrolyte	reference
		mV dec ⁻¹		
CoNC@MoS ₂ /CNF	143	68	1 M KOH	This work
CoNC/CNF	257	79	1 M KOH	This work
NiCo ₂ S ₄ NW/NF	210	58.9	1M KOH	Adv. Funct. Mater.
				2016, 26, 4661.
Co ₉ S ₈ @MoS ₂ /CNFs	190	110	0.5 M	Adv. Mater. 2015,
			H_2SO_4	27, 4752.
	219	110	1M KOH	ACS Catal. 2016,
N1Fe/nanocarbon				6, 580.
MoS ₂ /graphene/Ni foam	>600	98	1M KOH	Adv. Funct. Mater.
				2014, 24, 6123.
MoS_{2+x} nanoparticles	310	84	1M KOH	Angew. Chem. Int.
				Ed., 2015, 54, 664.
Co/N-doped carbon	260	91.2	1M KOH	ACS Nano 2016,
				10, 684.
Mo ₂ C nanoparticles	190	60	1М КОН	Angew. Chem. Int.
				Ed. 2012, 51,
				12703.
MoS_2/CoS_2	87	73.4	0.5 M	J. Mater. Chem. A
nanorods/cc			H_2SO_4	2015 , <i>3</i> , 22886
Co ₉ S ₈ -10@MoS _x /CC	134	70.6	0.5 M	Nano energy, 2017,
			$\mathrm{H}_2\mathrm{SO}_4$	32,470

Table S1. Comparison of the HER performance of as-prepared materials with other reported Co and MoS_2 based HER electrocatalysts.

Catalyst	η_{10mV}	Tafel slope	Electrolyte	reference
		mV dec ⁻¹		
CoNC@MoS ₂ /CNF	350	51.9	1 M KOH	This work
CoNC/CNF	430	89.7	1 M KOH	This work
CoS-				Adv. Funct. Mater.
$Co(OH)_2@aMoS_{2+x}/$	380	68	1 M KOH	2016, 26, 7386.
ni foam				,,
Co ₉ S ₈ @MoS ₂ /CNFs	430	61	1 M KOH	Adv. Mater. 2015,
	120	01		27, 4752.
$MoS_2-Ni_3S_2$	249	66	1 M KOH	ACS Catal. 2017,
HNRs/NF				7,2357
CoNi-LDH/Fe-				I Mater Chem A
porphyrinlayer-by-	264	37.6	1 M KOH	2016 A 11516
layer				2010, 4, 11310.
Co(OH) ₂	450	62	0.1 M KOH	ACS
				Appl.Mater.Interfaces
				2015, 7, 12930.
Co monolayer array	390	-	0.1 M	J. Am. Chem. Soc.,
			КОН	2015,137
Co/N-C-800	370	61.4	0.1 M	Nanoscale, 2014, 6,
			КОН	15080
PNC/Co	370	48	1M KOH	J. Mater. Chem. A,
				2016, 4, 3204

Table S2. Comparison of the OER performance of as-prepared materials with other reported Co and MoS_2 based OER electrocatalysts.

Catalyst	η_{10mV}	Loading mg	Electrolyte	reference
		cm ⁻²		
CoNC@MoS ₂ /CNF	1.62	2.0(CNF+	1М КОН	This work
films	1.02	CoNC@MoS ₂₎		THIS WOLK
CP/CTs/Co S	-S 1.743 - 1M KO	_	1М КОН	ACS Nano 2016, 10,
01/013/00-5			2342.	
NiCo ₃ O4 hollow				Angew Chem Int
microcuboids	1.65	1.0	1M NaOH	Ed. 2016, 55, 6290.
Co _x Mn _y CH/NF	1.68	-	1M KOH	J. Am. Chem. Soc.
A y				2017, 139, 8320.
N/Co-doped	1.66	0.714	0.1M KOH	Adv. Funct. Mater.
PCP//NRGO	1.00			2015, 25, 872.
a-CoSe/Ti	1.65	38	1М КОН	Chem. Commun.
	1100	2.0		2015, 51, 16683.
EG/Co _{0.85} Se/NiFe-	1 67	4 0	1М КОН	Energy Environ. Sci.
LDH	1.07			2016, 9, 478.

Table S3. Comparison of the water splitting performance of as-prepared materials with other reported Co and MoS_2 based water splitting electrocatalysts.