Supporting Information

Controlled pyrolysis of MIL-88A to Fe₂O₃@C nanocomposites with varied morphologies and phases for advanced lithium storage

Yang Wang, ^{a, b} Xingmei Guo, ^a Zhenkang Wang, ^a Minfeng Lü, ^a Bin Wu, ^a Yue Wang, ^a Chao Yan, ^c Aihua Yuan, ^{a, b} and Hongxun Yang ^{a, b, d,*}

^aSchool of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China, ^bMarine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China, ^cSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China, ^dJiangsu Tenpower Lithium Co. Ltd., Zhangjiagang 215618, Jiangsu, China.

*Corresponding author: E-mail address: yhongxun@126.com (Hongxun Yang);

Fig. S1 (a, b) TEM and (c) XRD of the as-synthesized MIL-88A; (d) SEM image of MIL-88A heated at 500 °C for 4h.

Fig. S2 XPS spectra of carbon-coated α-Fe₂O₃ hollow nanospindles.

As displayed in Fig. S2a, it reveals the peaks of Fe 2p at 710.38 eV and 725.08 eV, which match well with the reported values of Fe_2O_3 . The deconvolution peaks of the O 1s spectrum (Fig. S2b) are decomposed into three components using peak fitting, which are centered at 530.00, 531.66 and 533.64 eV. One peak centered at 530.00 eV is attributed to the O^{2-} forming oxides with Fe, while the others can be ascribed to the -OH and -COOH in carbon, respectively. From the typical C 1s spectrum (Fig. S2c) in the composites, three components are also seen at 284.77, 285.91 and 288.55 eV, which correspond to the C-C, C-O and C=O bonds of carbon, respectively.

Fig. S3 (a) N_2 sorption isotherms and (b) pore size distributions of carbon-coated α -Fe₂O₃ hollow nanospindles.

Fig. S4 Enlarged TEM image of carbon-coated α -Fe₂O₃ hollow nanospindle.

Fig. S5 XRD of Fe₂O₃-300-0.5.

Fig. S6 Photographs of (a) Fe_2O_3 -400-0.5, (b) Fe_2O_3 -400-1, (c) Fe_2O_3 -400-2, (d) Fe_2O_3 -400-3 and (e) Fe_2O_3 -500-2 spreaded on papers and magnetically suspended.

Fig. S7 XPS spectra (Fe 2p) of (a) Fe₂O₃-400-0.5, (b) Fe₂O₃-400-1, (c) Fe₂O₃-400-2, (d) Fe₂O₃-400-3 and (e) Fe₂O₃-500-2.

Fig. S8 XPS spectra (O 1s) of (a) Fe₂O₃-400-0.5, (b) Fe₂O₃-400-1, (c) Fe₂O₃-400-2, (d) Fe₂O₃-400-3 and (e) Fe₂O₃-500-2.

Fig. S9 XPS spectra (C 1s) of (a) Fe₂O₃-400-0.5, (b) Fe₂O₃-400-1, (c) Fe₂O₃-400-2, (d) Fe₂O₃-400-3 and (e) Fe₂O₃-500-2.

Fig. S10 HRTEM of Fe₂O₃-500-2.

The very little carbon on the surface of Fe_2O_3 -500-2 nanobipyramids was found by TEM, which is similar to the preparation of $MoO_2@C$ nano-octahedrons.¹

(1) G. L. Xia, D. Liu, F. C. Zheng, Y. Yang, J. W. Su and Q. W. Chen, *J. Mater. Chem. A*, 2016, **4**, 12434-12441.

Fig. S11 SEM images of Fe₂O₃-300-0.5, Fe₂O₃-400-1, Fe₂O₃-400-3.

Fig. S12 (a) N_2 sorption isotherms and (b) pore size distributions of Fe-400-2; (c) N_2 sorption isotherms and (d) pore size distributions of Fe-500-2.

Fig. 13 (a) TGA curves of the MIL-88A precursors in air and N₂.

Fig. S14 The charge-discharge curves of α -Fe₂O₃ carbon-coating nanospheres for the 15th, 75th and 150th cycles at 0.2 C.

Fig. S15 EIS spectra of the carbon-coated α -Fe₂O₃ hollow nanospindles as anodes for LIBs before cycling and after cycling.

Table S1 Electrochemical properties of carbon-coated α -Fe₂O₃ hollow nanospindles, $\alpha\gamma$ -Fe₂O₃@C (Fe₂O₃-400-2) and α -Fe₂O₃@C nanobipyramids (Fe₂O₃-500-2) of this work and previous Fe₂O₃ derived from MOFs.

Typical examples	Electrochemical properties	Ref.
Carbon-coated a-Fe ₂ O ₃ hollow	1207 mAh g ⁻¹ after 200 cycles at a current density of 200 mAh g ⁻¹	This
nanospindles	961.5 mAh g ⁻¹ after 500 cycles at a current density of 1000 mAh g ⁻¹	work
αγ-Fe ₂ O ₃ @C nanobipyramids	875.5 mAh g^{-1} after 50 cycles at a current density of 200 mAh g^{-1}	This
	631.6 mAh g ⁻¹ after 150 cycles at a current density of 1000 mAh g ⁻¹	work
α-Fe ₂ O ₃ @C nanobipyramids	969.1 mAh g ⁻¹ after 50 cycles at a current density of 200 mAh g ⁻¹	This
	367.8 mAh g $^{-1}after$ 150 cycles at a current density of 1000 mAh g $^{-1}$	work
Porous Fe ₂ O ₃ nanotubes	951.6 mAh g ⁻¹ after 50 cycles at a current density of 100 mA g ⁻¹	[1]
α -Fe ₂ O ₃ nano-assembled spindles	1024 mAh g ⁻¹ after 40 cycles at a current density of 100 mA g ⁻¹	[2]
Spindle-like α -Fe ₂ O ₃	911 mAh g ⁻¹ after 50 cycles at a current density of 200 mA g ⁻¹	[3]
Porous Fe ₂ O ₃ nanocubes	800 mAh g ⁻¹ after 50 cycles at a current density of 200 mA g ⁻¹	[4]
Hierarchical Fe ₂ O ₃ microboxes	945 mAh g ⁻¹ after 30 cycles at a current density of 200 mA g ⁻¹	[5]
Multiple-shelled Fe ₂ O ₃ microboxes	650 mAh g ⁻¹ after 30 cycles at a current density of 200 mA g ⁻¹	[6]
Yolk-Shell octahedron	1176 mAh g ⁻¹ after 200 cycles at a current density of 100 mAh g ⁻¹	[7]
	744 mAh g-1after 500 cycles at a current density of 1000 mAh g-1 $$	

Table S2 Electrochemical properties of carbon-coated α -Fe₂O₃ hollow nanospindles, $\alpha\gamma$ -Fe₂O₃@C (Fe₂O₃-400-2) and α -Fe₂O₃@C nanobipyramids (Fe₂O₃-500-2) of this work and previous Fe₂O₃ or

Fe₂O₃@C.

Typical examples	Electrochemical properties	Ref.
Carbon-coated α -Fe ₂ O ₃ hollow	1207 mAh g ⁻¹ after 200 cycles at a current density of 200 mAh g ⁻¹	This
nanospindles	961.5 mAh g ⁻¹ after 500 cycles at a current density of 1000 mAh g ⁻¹	work
αγ-Fe ₂ O ₃ @C nanobipyramids	875.5 mAh g ⁻¹ after 50 cycles at a current density of 200 mAh g ⁻¹	This
	631.6 mAh g-1 after 150 cycles at a current density of 1000 mAh g-1 $$	work
α-Fe ₂ O ₃ @C nanobipyramids	969.1 mAh g ⁻¹ after 50 cycles at a current density of 200 mAh g ⁻¹	This
	367.8 mAh g-1 after 150 cycles at a current density of 1000 mAh g-1 $$	work
Porous α -Fe ₂ O ₃ nanofibers	1180 mAh g ⁻¹ after 20 cycles at a current density of 100 mA g ⁻¹	[8]
Mesoporous Fe ₂ O ₃	800 mAh g ⁻¹ after 300 cycles at a current density of 500 mA g ⁻¹	[9]
Polycrystalline α -Fe ₂ O ₃ nanotubes	1000 mAh g ⁻¹ after 50 cycles at 0.5 C, 500-800 mAh g ⁻¹ at 1-2 C	[10]
Porous α -Fe ₂ O ₃ nanosheets on Ti foil	908 mAh g ⁻¹ after 60 cycles at a current density of 100 mA g ⁻¹	[11]
Single crystalline α -Fe ₂ O ₃	518 mAhg ⁻¹ after 50 cycles at 0.1 C	[12]
nanoshee-		
ts grown directly on Ni foam		
γ -Fe ₂ O ₃ /graphenenanoribbons	910 mAh g ⁻¹ after 134 cycles at acurrent density of 200 mA g ⁻¹	[13]
Carbon-coated α -Fe ₂ O ₃ hollow nan-	800 mAh g ⁻¹ after 100 cycles at a current density of 500 mA g ⁻¹	[14]
ohorns grafted on CNTbackbones		
α-Fe ₂ O ₃ @rGO,core/shell	1787.27mAh g ⁻¹ after 90 cycles at acurrent density of 100 mA g ⁻¹	[15]
composite		
3D porous α -Fe ₂ O ₃ nanorods/CNT	1000 mAh g ⁻¹ after 300 cycles at acurrent density of 200 mA g ⁻¹	[16]

-GFcomposite (GF: graphene foam)		
RG-O/Fe ₂ O ₃ composite	1027 mAh g ⁻¹ after 50 cycles at acurrent density of 100 mA g ⁻¹	[17]
Fe ₂ O ₃ /GS Aerogels	733 mAh g ⁻¹ after 1000 cycles at acurrent density of 2000 mA g ⁻¹	[18]
40 wt.%-rGO/Fe ₂ O ₃ composite	690 mAh g ⁻¹ after 100 cycles at acurrent density of 500 mA g ⁻¹	[19]
Fe ₂ O ₃ -graphene sheet-on-sheet	800.6 mAh g ⁻¹ after 50 cycles at acurrent density of 100 mA g ⁻¹	[20]
composites		
Fe ₂ O ₃ /Fe ₃ C-graphene thin film	518 mAh g ⁻¹ after 100 cycles at acurrent density of 0.17 C	[21]
Fe ₂ O ₃ @C@G composite	864 mAh g ⁻¹ after 100 cycles at acurrent density of 100 mA g ⁻¹	[22]
Fe ₂ O ₃ -FLG composite	758 mAh g ⁻¹ after 300 cycles at acurrent density of 200 mA g ⁻¹	[23]
Fe ₂ O ₃ /rGO composite	600 mAh g ⁻¹ at acurrent density of 200 mA g ⁻¹	[24]
HP-Fe-G composite	1100 mAh g ⁻¹ after 50 cycles at acurrent density of 50 mA g ⁻¹	[25]
Fe ₂ O ₃ -NC/GN aerogels	1121 mAh g ⁻¹ after 500 cycles at acurrent density of 500 mA g ⁻¹	[26]
rGO/α -Fe ₂ O ₃ nanoplate composite	896 mAh g ⁻¹ after 200 cycles at acurrent density of 5 C	[27]
Fe ₂ O ₃ -GNS rice (or particle)-on-	734 mAh g ⁻¹ after 40 cycles at acurrent density of 0.1 C	[28]
sheet composite		
α-Fe ₂ O ₃ /CNT-GF composite	1000 mAh g ⁻¹ after 300 cycles at acurrent density of 200 mA g ⁻¹	[29]
α -Fe ₂ O ₃ nanorod arrays on	1200 mAh g ⁻¹ after 500 cycles at acurrent density of 200 mA g ⁻¹	[30]
reduced graphene oxide		

References:

(1) M. C. Sun, M. F. Sun, H. X. Yang, W. H. Song, Y. Nie and S. N. Sun, *Ceram. Int.*, 2017, **43**, 363-367.

(2) A. Banerjee, V. Aravindan, S. Bhatnagar, D. Mhamane and S. Madhavi, Ogale. S. Nano Energy,

2013, 2, 890-896.

- (3) X. D. Xu, R. G. Cao, S. Jeong and J. Cho, Nano Lett., 2012, 12, 4988-4991.
- (4) L. Zhang, H. B. Wu, R.Xu and X. W. Lou, CrystEngComm, 2013, 15, 9332-9335.
- (5) L. Zhang, H. B.Wu, S. Madhavi, H. H. Hng and X. W. Lou, J. Am. Chem. Soc., 2012, 134, 17388-17391.
- (6) L. Zhang, H. B. Wu and X. W. Lou, J. Am. Chem. Soc., 2013, 135, 10664-10672.
- (7) W. Guo, W. Sun, L. P. Lv, S.Kong and Y. Wang, ACS Nano, 2017, 11, 4198-4205.

(8) S. Jayaraman, V. Aravindan, M. Ulaganathan, W. C. Ling, S. Ramakrishna and S. Madhavi, *Adv. Sci.*, 2015, 1500050.

(9) Y. Xu, G. Jian, Y. Liu, Y. Zhu, M. R. Zachariah and C. Wang, Nano Energy, 2014, 3, 26-35.

(10) Z. Y. Wang, D. Y. Luan, S. Madhavi, C. M. Li and X. W. Lou, *Chem. Commun.*, 2011, 47, 8061-8063.

(11) L. L. Li, H. B. Wu, L. Yu, S. Madhavi and X. W. Lou, Adv. Mater. Interfaces, 2014, 1, 1400050.

(12) D. N. Lei, M. Zhang, B. H. Qu, L. B.Chen, Y. G.Wang, E. D. Zhang, Z. Xu, Q. H. Li and T. H. Wang, *Nanoscale*, 2012, 4, 3422-3426.

(13) J. Lin, A. R. O. Raji, K. Nan, Z. Peng, Z. Yan, E. L.Samuel, D. Natelson and J. M. Tour, *Adv. Funct. Mater.*, 2014, 24, 2044-2048.

(14) Z. Y. Wang, D. Y. Luan, S. Madhavi, Y. Hu and X. W. Lou, *Energy Environ. Sci.*, 2012, **5**, 5252-5256.

(15) X. Li, Y. Ma, L. Qin, Z. Zhang, Z. Zhang, Y. Z. Zheng and Y. Qu, J. Mater. Chem. A, 2015, 3, 2158-2165.

(16) M. Chen, J. Liu, D. Chao, J. Wang, J. Yin, J. Lin, H. J. Fanand and Z. X. Shen, *Nano Energy*, 2014, 9, 364-372.

(17) X. Zhu, Y. Zhu, S. Murali, M. D. Stoller and R. S. Ruoff, ACS Nano, 2011, 5, 3333-3338.

(18) R. H. Wang, C. H. Xu, M. Du, J. Sun, L. Gao, P. Zhang, H. L. Yao and C. C. Lin, *Small*, 2014, 10, 2260-2269.

(19) I. T. Kim, A. Magasinski, K. Jacob and G. Yushin, Carbon, 2013, 52, 56-64.

(20) J. Kan and Y. Wang, Sci. Rep., 2013, 3, 3502.

(21) Y. Yang, X. J. Fan, G. Casillas, Z. W. Peng, G. D. Ruan, G. Wang, M. J. Yacaman and J. M.Tour, *ACS Nano*, 2014, 8, 3939-3946.

(22) H. L. Fei, Z. W. Peng, L. Li, Y. Yang, W. Lu, E. L. G. Samuel, X. J. Fan and J. M. Tour, *Nano Res.*, 2014, 7, 502-510.

(23) Y. K. Wang, L. C. Yang, R. Z. Hu, W. Sun, J. W. Liu, L. Z. Ouyang, B. Yuan, H. H. Wang and M. Zhu, *J. Power Sources*, 2015, **288**, 314-319.

(24) L. S. Xiao, M. Schroeder, S. Kluge, A. Balducci, U. Hagemann, C. Schulz and H. Wiggers, J. Mater. Chem. A, 2015, **3**, 11566-11574.

(25) X. Wang, W. Tian, D. Q. Liu, C. Y. Zhi, Y. Bando and D. Golberg, *Nano Energy*, 2013, 2, 257-267.

(26) R. H. Wang, C. H. Xu, J. Sun and L. Gao, Sci. Rep., 2014, 4, 7171.

(27) S. K. Liu, Z. X. Chen, K. Xie, Y. J. Li, J. Xu and C. M. Zheng, *J. Mater. Chem. A*, 2014, **2**, 13942-13948.

(28) Y. Q. Zou, J. Kan and Y. Wang, J Phys. Chem. C, 2011, 115, 20747-20753.

(29) M. H. Chen, J. L. Liu, D. L. Chao, J. Wang, J. H. Yin, J. Y. Lin, H. J. Fan and Z. X. Shen, *Nano Energy*, 2014, **9**, 364-372.

(30) D. Z. Kong, C. W. Cheng, Y. Wang, B. Liu, Z. X. Huang and H. Y. Yang, *J. Mater.Chem. A*, 2016, **4**, 11800-11811.