Supporting Information

MoS₂ Covered SnS Nanosheets as high performance anode materials

for lithium ion batteries

Qichang Pan,^a Fenghua Zheng,^a Yanan Wu,^a Xing Ou,^a Chenghao Yang,^{*a} Xunhui Xiong,^a and Meilin Liu^{ab}

a Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China

b School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States

Corresponding Author

*(C.H. Yang). Email: esyangc@scut.edu.cn.

Fig.S1 XRD pattern of the SnS₂.

Fig.S2 XRD patterns of SnS.

Fig.S3 XRD patterns of MoS₂/C composite.

Fig.S4 TG curves of SnS/MoS₂/C.

Table. S1 ICP analysis of atomic percentages of SnO₂/ MoO₃ composites.

	ICP Measured Value		Component	
sample	Sn (wt%)	Mo (wt%)	SnO ₂ (wt%)	MoO ₃ (wt%)
SnO ₂ /MoO ₃	87.59 %	12.41 %	85.68 %	14.32 %

Fig. S5 XPS survey spectra of the as-synthesized SnS, MoS₂/C and SnS/MoS₂-C composite.

Fig. S6 (A, C, E) Adsorption–desorption isotherms and (B, D, F) pore size distributions of SnS₂, SnS and SnS/MoS₂-C, respectively.

Fig.S7 SEM images of SnS_2 without added NH_4F .

Fig.S8 SEM images of SnS_2/MoS_2 -C composite before annealing.

Fig.S9 SEM images of MoS₂/C composite.

Fig. S10. (A) CV curves of SnS; (B) charge and discharge profiles of SnS.

Fig.S11 (A) CV curves of MoS₂/C composite; (B) charge and discharge profiles of

MoS₂/C composite.

Fig. S12 Nyquist plots of SnS, MoS₂/C and SnS/MoS₂-C.

Table S2. Comparison of specific capacity at different current densities for SnS-based composite anodes reported previously.

Materials	Capacity retention	Rate performance	Ref
SnS nanosheet	560 mA h g ⁻¹ after 50 cycles at 782 mA g ⁻¹	639 mA h g ⁻¹ at 4.0 A g ⁻¹	S1
Sandwich-like SnS /Polypyrrole	967 mA h g ⁻¹ after 50 cycle at 100 mA g ⁻¹	576 mA h g ⁻¹ at 5.0 A g ⁻¹	82
Spherical Graphene Framework/SnS	800 mA h g ⁻¹ after 100 cycles at 100 mA g ⁻¹	380 mA h g ⁻¹ at 5.0 A g ⁻¹	[18]
Porous SnS Nanorods/Carbon	696 mA h g ⁻¹ after 50 cycles at 50 mA g ⁻¹		[13]
SnS nanoflowers	580 mA h g ⁻¹ after 30 cycles at 50 mA g ⁻¹		[16]
SnS nanosheet bonded with graphene	560 mA h g ⁻¹ after 100 cycles at 100 mA g ⁻¹	331 mA h g ⁻¹ at 2.0 A g ⁻¹	[14]
3D-hierarchical SnS nanostructures	520 mA h g ⁻¹ after 50 cycles at 50 mA g ⁻¹	330 mA h g ⁻¹ at 0.5 A g ⁻¹	[17]

SnS@polypyrrole-nanobelt	887 mA h g ⁻¹ after 100	349 mA h g ⁻¹	[15]
/carbon nanotube paper	cycles at 100 mA g ⁻¹	at 5.0 A g ⁻¹	[10]
SnS/C Nanocomposite	607 mA h g ⁻¹ after 200 cycles at 1.0 A g ⁻¹	484 mA h g ⁻¹ at 5.0 A g ⁻¹	[11]
SnS/MoS ₂ -C composite	989.7 mA h g ⁻¹ after 60 cycles at 0.2 A g ⁻¹ ;	675 mA h g ⁻¹ at 5.0 A g ⁻¹	This work
	718 mA h g ⁻¹ after 700 cycles at 2.0 A g ⁻¹		

[1] Jin-Gu Kang a, Jae-Gwan Park a, Dong-Wan Kim. Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries, Electrochemistry Communications 12
(2010) 307–310.

[2] Jun Liu, Mingzhe Gu, Liuzhang Ouyang, Hui Wang, Lichun Yang, and Min Zhu, Sandwich-like SnS/Polypyrrole Ultrathin Nanosheets as High-Performance Anode Materials for Li-Ion Batteries, ACS Appl. Mater. Interfaces 2016, 8, 8502–8510.