Supporting Information

Galvanic-replacement Mediated Synthesis of Copper-Nickel Nitrides as Electrocatalyst for Hydrogen Evolution Reaction

Yaming Ma,^{a1} Zhengda He,^{b1} Zhifeng Wu,^c Bo Zhang,^a Yang Zhang,^c Shujiang Ding,^a and Chunhui Xiao^{a*}

Fig S1. (a) Optical images of pristine Ni foam, $Cu_2O@Ni(OH)_2/NF$ and $Cu_xNi_{4-x}N/NF$. Images of reactor (b) before and (c) after the wet synthesis process.

Fig S2. XRD pattern of Cu₂O@Ni(OH)₂/NF.

Fig S3. Slow scan micro-zone XRD patterns of Cu_xNi_{4-x}N/NF.

Fig S4. XPS spectra of $\text{Cu}_{x}\text{Ni}_{4\text{-}x}\text{N/NF}$ and $\text{Cu}_{2}\text{O}\text{@Ni(OH)}_{2}\text{/NF}$.

Figu S5. *iR*-corrected LSV curves of catalysts derived from varying additions of SCT (a), CuCl (b) and nitridation temperatures (c) in 1 M KOH. Scan rate: 5 mV s⁻¹.

Fig S6. (a-d) CVs of NF, $Cu_2O@Ni(OH)_2/NF$, $CuNiO_x/NF$, and $Cu_xNi_{4-x}NF$ at various scan rates. (e) The currents as a function of scan rate ($\Delta j = ja - jb$). (f) The relationship between the C_{dl} and overpotential (at the current density of 100 mA cm⁻²).

Fig S7. (a-c) SEM images of Ni_4N/CC , Cu_4N/CC and $Cu_xNi_{4-x}N/CC$. (d) XRD patterns of Cu_4N/CC , Ni_4N/CC , $Cu_xNi_{4-x}N/CC$ and CC.

Fig S8. Total and partial electronic density of states (TDOS and PDOS) calculated for $Cu_2O Cu_4N$ and Ni_4N and. The Fermi level is set at 0 eV.

Fig S9. (a, b) Calculated DOS for each element in Cu₄N and Ni₄N. The Fermin level was set at 0 eV.

g S10. (a) *iR*-corrected polarization curves of Cu₄N/CC, Ni₄N/CC, Cu_xNi_{4-x}N/CC and CC in 1 M KOH medium. (b) Corresponding Tafel plots of electrodes.

Fig S11. XRD pattern of Ni₄N/NF.

Fig. S12. Linear sweep voltammetry (LSV) curves with iR-corrected for HER in acidic and alkaline.

Fig S13. Chronopotentiometric curve of HER of N_4N/NF in 0.5 M H_2SO_4 and 1 M KOH with a constant current density of 20 mA cm⁻².

Fig S14. Schematic structural representations for hydrogen adsorption at different site of Cu_4N (111,100) and Ni_4N (111,100). (The brown ball represents Cu atom, the light green ball represents Ni atom, the light grey ball represents H atom and light blue ball represents N atom)

Catalyst –	Overpotential (mV)		$\mathbf{T}_{\mathbf{r}}$ for the second	Deferrer
	$\eta_{10}{}^{[a]}$	$\eta_{100}{}^{[b]}$	- Tatel slope (mV dec ⁻¹)	Keterence
Cu _x Ni _{4-x} N/NF	52	112	59	This work
CNF@CoS ₂	110	~225	66.8	Inorg. Chem. Front.
				2016 , <i>3</i> , <i>1280-1288</i>
MoP/SNG-650	99	~175	54	ACS Catal. 2017 , 7, 3030-
				3038
MoP-C	136	>200	82	Nano Energy.
				32. 2017 511–519
NiCo ₂ P _x	104	~140	59.6	Adv. Mater. 2017 , 29,
				1605502
N-MoSe ₂ /VG	89	>150	49	Adv. Mater. 2017 , 29,
				1700748
Fe _{0.5} Co _{0.5} P/CC	37	>150	30	Nano lett. 2016 . 6617-6621
Co ₉ S ₈ -30@MoS _x /CC	98	~160	64.8	Nano Energy. 32. 2017 470–
				478
Ni _{0.89} Co _{0.11} Se ₂ MNSN/NF	52	~150	39	Adv. Mater. 2017 , 1606521
Ni-Mo-N	~50	>150	40	Nano Energy. 2016 . 22,
				111–119

Table S1. A brief comparison of HER in 0.5 M H_2SO_4 reported recently.

[a] overpotential of the electrocatalyst at a current density of 10 mA cm⁻². [b] overpotential of the electrocatalyst at a current density of 100 mA cm⁻².

Catalyst —	Overpoter	ntial (mV)	Tafel slope (mV dec ⁻¹)	Reference
	$\eta_{10}{}^{[a]}$	$\eta_{100}{}^{\mathrm{[b]}}$		
Cu _x Ni _{4-x} N/NF	12	111	86	This work
CNF@CoS ₂	207	~375	113	Inorg. Chem. Front.
				2016 , <i>3</i> , <i>128-1288</i>
MoP/SNG-20%	49	~151	31	ACS Catal. 2017 , 7, 3030-
				3038
Mo ₂ C-C	149	>250	66	Nano Energy. 32 2017 ,
				511–519
$Ni_{0.89}Co_{0.11}Se_2$	85	~158	52	Adv. Mater. 2017 , 1606521
MNSN/NF		100		
Ni–Mo–N	~50	>150	39	Nano Energy.
				2016 , <i>22</i> , <i>111</i> – <i>119</i>
NiCo ₂ Px	58	127	34.3	Adv. Mater. 2017 , 29,
				1605502
MoNi ₄ /MoO ₂ @Ni	15	~50	30	Nat Commun. 2017 ; 8:
				15437.
NiCo ₂ O ₄	~100	>150	53	Angew. Chem. Int. Ed.
				2016, <i>55,</i> 1

Table S2. A brief comparison of HER in 1 M KOH reported recently.

[a] overpotential of the electrocatalyst at a current density of 10 mA cm⁻². [b] overpotential of the electrocatalyst at a current density of 100 mA cm⁻².