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Fig. S1. Zeta potentials of (a) GO and (b) WO; NRs aqueous solutions.
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Fig. S2. XRD pattern of pristine WO; NRs.
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Fig. S3. XRD patterns of GO and GR.
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Fig. S4. High-resolution XPS spectra of (a) W 4f and (b) Ti 2p for pristine WO3; NRs and TNBs,
respectively.

s4



Q
o
-
(/2]

C-0-C&C=0

HO-C=0

Intensity (a.u.)

292 290 288 286 284 282 280
Binding Energy (eV)

b C1s
3
8
2
‘®
c
b
£
292 290 288 286 284 282

Binding Energy (eV)
Fig. SS. High-resolution C 1s spectra of (a) GO and (b) TNBs/WO; NRs/GR ternary heterostructure.
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Fig. S6. FTIR spectra of (a) TNBs, (b) TNBs/WO3; NRs/GR and (c¢) GO.

Note: GO displays several characteristic bands at 1730, 1633, 1401, 1226, and 1058 cm.
Specifically, the carboxyl group appears at 1730 cm! (i.e., C=O0 stretching vibration)' along with the
presence of C-O vibration of epoxy groups at 1058 and 857 cm!.? The hydroxyl group (-OH) is
located at ca. 3400 and 1401 cm!, the epoxy group (C-O-C) at 1226 cm™!, and the alkoxy group (C-
OH & C-0) at 1050 cm™'.3 The peak located at 1633 cm™ is associated with the aromatic C=C bond
in GO.4+3

Fig. S7. (a) High and (b) low-magnified FESEM images of WO3; NRs.
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Fig. S8. High-magnified FESEM images of (a) TNBs matrix, (b) TNBs/WO3; NRs and (c) TNBs/GR
binary heterostructures.

S7



0 1 2 3 4 5 pm iy
. b

12

o
o

]

Absorbance (a.u.)
o
=N

o
N

200 300 400 500 600 700
Wavelength (nm)

..."'.

Fig. S9. (a) AFM image of GO with corresponding height profile in the inset and (b) UV-absorption

spectrum of GO aqueous solution with photograph in the inset, (¢) FESEM and (d) TEM images of
GO.
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Fig. S10. HRTEM image of TNBs/WO; NRs/GR ternary heterostructure with corresponding SAED

pattern in the inset.
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Fig. S11. Variations of TOC percentage as function of irradiation time over different catalysts.
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Fig. S12. Survey XPS spectra of TNBs/WO; NRs/GR ternary heterostructure before and after cyclic
reactions.
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Fig. S13. High-resolution N 1s spectrum of TNBs/WO;3; NRs/GR ternary heterostructure after cyclic
reactions.

Note: It is apparent that peak intensity of high-resolution N 1Is spectrum of TNBs/WO; NRs/GR
ternary heterostructure is still rather weak and comparable to that of before cyclic reaction, indicating
PDDA layer intercalated within the interfacial region of TNBs and WO; NRs was not removed
during the photocatalytic reaction and this is beneficial for retaining the structural integrity of the
ternary heterostructure.
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Fig. S14. Control experiments by bubbling N, and O, gas into the reaction system toward the
photocatalytic degradation of RhB over TNBs/WO; NRs/GR ternary heterostructure with the same
irradiation time of 60 min.

Experimental section

Synthesis of Graphene Oxide (GO)

GO nanosheets were synthesized from crystalline graphite nanosheets powder (99.5 %) using a
modified Hummers method.%” In a typical synthesis, 10 g of graphite powder was added to 230 mL
of concentrated H,SO,4 (98 %) which was cooled in an ice bath. Following, 30 g of KMnO, was
added slowly to the above solution with gentle stirring for 10 min. Temperature of the mixed
solution was then raised to 35 °C and kept for 2 h to completely oxidize graphite. Afterwards, the
mixture was diluted with 460 mL of DI H,O and further diluted by 1.4 L of DI H,O 5 min later under
vigorous stirring. 50 mL of H,O, was then added to the mixture and a brilliant yellow product was
formed along with bubbling. The mixture was filtered and washed by 1 : 10 HCI aqueous solution to
remove metal ions and by DI H,O to remove residual acid. The filter cake thus-obtained was
dispersed in DI H,O with a mechanical agitation and centrifuged at 4500 rpm for 2 min and 5 cycles

to remove small GO pieces and water-soluble byproducts. The final sediment was dialyzed for two-
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weeks to remove impurity atoms and then re-dispersed in DI H,O with mechanical agitation or mild

sonication to result in exfoliated GO aqueous solution.
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