Supporting Information

2

1

3 Fe/Fe₃C@C Nanoparticles Encapsulated in N-Doped Graphene-CNTs Framework as

4 Efficient Bifunctional Oxygen Electrocatalyst for Robust Rechargeable Zn-air Battery

- 5 Qichen Wang,^{abc} Yongpeng Lei,^{*ab} Zhiyan Chen,^c Nan Wu,^d Yaobing Wang,^{*e} Bing Wang,^d
- 6 and Yingde Wang*d
- 7
- 8

1 Supplemental Figures and Tables

2 Figure S5. (a-c) HAADF-STEM images, (d) EELS spectrum of Fe@C-NG/NCNTs taken at red spot of

HAADF-STEM image.

Figure S7. N₂ adsorption/desorption isotherms of samples prepared at (a) 700 °C, (b) 800 °C, (c) 900 °C
and (d) comparison sample prepared in absence of SBA-15.

Figure S8. (a) XPS survey spectrum, (b) Comparison of N and Fe content of samples prepared at 700-900
°C, (c) High-resolution N 1s spectrum and (d) High-resolution Fe 2p spectrum for sample at 700 °C, (e)
High-resolution N 1s spectrum and (f) High-resolution Fe 2p spectrum for sample at 900 °C.

2 Figure S11. (a) LSV curves of different samples prepared at 700-900 °C and Pt/C at 1600 rpm.

Figure S12. The electrochemical impendence spectroscopy of Fe@C-NG/NCNTs and Pt/C.

Figure S13. Chronoamperometric response of Fe@C-NG/NCNTs and Pt/C in O₂-saturated 0.1 M KOH to
 test methanol crossover effect, (b) Long-term stability at 0.8 V.

2 Figure S15. (a) TEM image of Fe@C-NG/NCNTs. (b, c) TEM and (d) HRTEM images of Fe-BL.

Figure S16. CVs at scan rates of 1, 2, 3, 4 and 5 mV s⁻¹ in O₂-satuated 0.1 M KOH and the corresponding
current density taken at 1.045 V for (a, b) Fe@C-NG/NCNTs, (c,d) Fe-BL.

1

5

6 Figure S17. (a) LSV curves of MF, Fe-BL, Fe@C-NCNTs, Fe@C-NG/NCNTs and Fe@C-

7 NG/NCNTs + SCN⁻ electrode for OER. (b) Overpotential at 10 mA cm⁻² for MF, Fe@C-

- 8 NCNTs, Fe-BL, Fe@C-NG/NCNTs and Fe@C-NG/NCNTs + SCN⁻ electrode.
- 9

1 Q1: Why catalyst obtained at 800 °C shows better activity than 700 °C and 900 °C?

The CNTs was not observed in samples prepared at 700 °C (Figure S4), which may be 2 attributed to that the Fe³⁺ was not reduced to metallic iron by carbothermal reduction at 700 3 °C. And the corresponded XRD profile showed no Fe-based diffraction peaks (Figure S2). 4 Then CNTs appeared at 800°C may be due to the fact that the Fe³⁺ were reduced to Fe/Fe₃C 5 nanoparticles, thus promoting the rearrangement of carbon atoms during heat treatment. At 6 900 °C, the diameter of CNTs become much larger. The peaks shift from Fe₃C to Fe₃N and 7 FeO_x . The presence of iron compounds varied with temperature, indicating that the 8 temperature affects the reaction between Fe³⁺ and carbon thus would affect the final 9 10 electrochemical performance. Interestingly, the N₂ adsorption/desorption isotherm in Figure 11 S7 for three samples shows the meso-macroporous feature, similar BET surface area and pore volume. On the other hand, atomically dispersed $Fe-N_x$ species are able to act as highly active 12 sites. Based on XPS analysis in Figure S8, sample prepared at 800 °C shows the highest Fe 13 content. In other words, Fe@C-NG/NCNTs prepared at 800 °C has the highest content of Fe-14 N_x active sites among all samples. The above mentioned proof could rationally explain that 15 why catalyst obtained at 800 °C shows better activity than 700 °C and 900 °C. 16

	Sample	Scattering pair	CN	R(Å)	$\sigma^2(10^{-3}\text{\AA}^2)$	$\Delta E_0(eV)$	R factor
-	Fe@C-	Fe-N	3.1	1.89	10.3	-1.5	0.0040
	NG/NCNTs	Fe-Fe	4.2	2.44	7.9	-2.1	0.0049
	Fe foil	Fe-Fe1	8	2.48	5.9	1.2	0.0032
		Fe-Fe2	6	2.85	7.2		
	Fe ₂ O ₃	Fe-O1	3	1.93	4.4	0.5	0.0001
		Fe-O2	3	2.09	6.4		

1 Table S1. Structural parameters extracted from the Fe K-edge EXAFS fitting. ($S_0^2=0.85$)

3 S_0^2 is the amplitude reduction factor; CN is the coordination number; R is interatomic distance (the bond 4 length between Fe central atoms and surrounding coordination atoms); σ^2 is Debye-Waller factor (a 5 measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is edge-energy shift (the 6 difference between the zero kinetic energy value of the sample and that of the theoretical model). R factor 7 is used to value the goodness of the fitting. * This value was fixed during EXAFS fitting, based on the 8 known structure of Fe metal.

9 Error bounds that characterize the structural parameters obtained by EXAFS spectroscopy were estimated 10 as N ± 20%; R ± 1%; $\sigma^2 \pm 20\%$; $\Delta E_0 \pm 20\%$.

11

12 Table S2. The comparison of ORR activity of the other noble-metal-free electrocatalysts based materials

13 from previous literatures.

Catalysts	ORR E _{onset} (V)	ORR <i>E</i> _{1/2} (V)	OER E _{j=10 mA cm-2}	$\Delta \mathbf{E}$ $\mathbf{E}_{j=10 \text{ mA cm-2}}$ $- \mathbf{E}_{1/2}$	Reference
Fe@C-NG/NCNTs	0.93	0.84	1.68	0.84	This work!
NC@Co-NGC DSNCs	0.92	0.82	1.64	0.82	<i>Adv. Mater.</i> 2017 , <i>29</i> , 1700874-1700883.
N-Co ₉ S ₈ /G	0.94	0.74	1.64	0.90	<i>Energy Environ. Sci.</i> , 2016 , <i>9</i> , 1320-1326.
Co-C ₃ N ₄ /CNT	0.94	0.85	1.61	0.76	J. Am. Chem. Soc. 2017 , 139, 3336-3339.
Fe@N-C-700	0.97	0.83	1.71	0.88	<i>Nano Energy</i> 2015 , <i>13</i> , 387-396.
N-GCNT/FeCo-3	1.03	0.92	1.73	0.81	<i>Adv. Energy Mater.</i> 2017 , 7, 1602420- 1602431.
NGM-Co	0.88	0.79	1.74	0.95	<i>Adv. Mater.</i> 2017 , 29, 1703185-1703191.
Ni ₃ Fe/N-C	0.95	0.76	1.60	0.84	<i>Adv. Energy Mater.</i> 2017 , <i>7</i> , 1601172- 1601179.
NiO/CoN PINWs	0.89	0.68	1.53	0.85	ACS Nano. 2017, 11, 2275-2283.
NCNF-1000	0.97	0.82	1.84	1.02	<i>Adv. Mater.</i> 2016 , <i>28</i> , 3000-3006.

Table S3. Comparison the performance of zinc-air batteries reported.

Catalysts	Open- circuit voltage (V)	Maximum power density (mW cm ⁻²)	Specific capacity (mAh g ⁻¹)	Energy density (Wh kg ⁻¹)	Reference
Fe@C-NG/NCNTs	1.44	146.5	682	765	This work!
NCNT/Co _x Mn _{1-x} O	1.35	102.7	581	695	<i>Nano Energy</i> 2016 , <i>20</i> , 315-325.
NC@Co-NGC DSNC	1.45	109	565	510	<i>Adv. Mater.</i> 2017 , <i>29</i> , 1700874-1700883.
CoZn-NC-700	1.42	152	578	694	<i>Adv. Funct. Mater.</i> 2017 , 27, 1700795- 1700808.
NiFe@NC _x	1.36	77	584	732	ACS Catal. 2016 , 6, 6335-6342.
Ni ₃ Fe/N-C			528	634	<i>Adv. Energy Mater.</i> 2017 , 7, 1601172- 1601179.
ZnCo ₂ O ₄ /N-CNT	1.47	82.3	428	595	<i>Adv. Mater.</i> 2016 , <i>28</i> , 3777-3784.
Fe-N-CNFs	1.50		614	760	<i>Angew. Chem. Int. Ed.</i> 2015 , <i>54</i> , 8179-8183.
NiO/CoN PINWs	1.46	79.6	648	836	ACS Nano. 2017 , 11, 2275-2283.
NGM-Co		152	750	820	<i>Adv. Mater.</i> 2017 , 29, 1703185-1703191.
NCNF-1000	1.48	185	626	776	<i>Adv. Mater.</i> 2016 , <i>28</i> , 3000-3006.