Hierarchical Ni/NiTiO₃ derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting †

Chenlong Dong,[‡] ^a Xiangye Liu,[‡] Xin Wang,^a Xiaotao Yuan,^a Ziwan Xu,^a Wujie Dong,^a Muhammad Sohial Riaz,^a Guobao Li^{*} and Fuqiang Huang *_{ab}

^a Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.

^b CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China.

‡ Chenlong Dong and Xiangye Liu contributed equally to this work.

* Corresponding author, E-mail: liguobao@pku.edu.cn; huangfq@pku.edu.cn

Figure S1. SEM-EDX elemental mapping of NT-15.

Figure S3. (a) Nyquist plots of NT-15 and RuO₂; (b) Nyquist plots of NT-15 and Pt/C.

Figure S4. (a, b&c) The XRD patterns $Ni/NiTiO_3$ and their precursors with different ratios of Ni to Ti; (d) the XRD pattern of reference catalyst (NiFe LDH).

Figure S5. The SEM-EDX patterns of Ni/NiTiO₃ with different ratios of Ni to Ti.

Figure S6. (a) Polarization curves of Ni/NiTiO₃ with different ratios of Ni to Ti collected at 5 mV s⁻¹ and 2,000 rpm in O₂-saturated 0.1 M KOH; (b) differences in current density ($\Delta j = j_a - j_c$) plotted against scan rates. The linear slope is equivalent to twice of C_{dl}.

Figure S7. XRD patterns of bare Ni, bare NiTiO₃, Ni/NiO and Ni/TiO₂.

Figure S8. N_2 sorption isotherm of (a) NT-15 and (b) Ni and pore distribution in the inset; (c&d) TEM image of bare aggregated Ni nanoparticles.

Figure S9. (a) XRD patterns and (b) I-V curves of NiTiO₃@Ni and NT-15.

Detail calculations: The resistance of SS/In is 0.2367 Ω . The resistances deducting SS/In of NiTiO₃@Ni and NT-15 are 0.3724 and 0.4607 Ω , respectively. k

(conductivity) = GL/A, where G (conductance) = 1/R (NiTiO₃@Ni: 7.369 S and NT-15: 4.464 S), L is length (NiTiO₃@Ni: 0.66 mm and NT-15: 0.67 mm) and A is area (2.826*10⁻⁵ m²).

Figure S10. Polarization curves of Ni/NiTiO₃ with different ratios of Ni to Ti collected

at 5 mV s⁻¹ and 2,000 rpm in N_2 -saturated 0.1 M KOH;

Figure S11. (a) Nyquist plots of Ti-mesh/NT-15 || Ti-mesh/NT-15; **(b)** Nyquist plots of Ti-mesh/Pt/C || Ti-mesh/RuO₂.

Catalyst	Onset overpotential	Overpotential (mV)@	Tafel slope	Electrolyte	reference
	(mV)	10 mA/cm ²	(mV dec ⁻¹)	v	
Ni/NiTiO ₃	270	336	62.2	0.1 M KOH	This work
NiCo _{2.7} (OH) _x	250	350	65	1 M KOH	1
m-NiFe/CN _x	~220	360	59.1	0.1 M KOH	2
α-Ni(OH) ₂	310	331	42	0.1 M KOH	3
Ni ₂ P NPs	220	290	47	1 М КОН	4
NiS nanosheet	270	~290	47	0.1 M KOH	5
NiSe nanowalls/G	370	430	83.4	1 М КОН	6
NiCo ₂ S ₄ /Ni foam	270	340	_	0.1 M KOH	7

Table S1. Comparison with some reported Ni-based OER catalysts.

Catalyst	Onset overpotential	Overpotential (mV)@	Tafel slope	Electrolyte	reference	
	(mV)	10 mA/cm ²	(mV dec ⁻¹)			
Ni/NiTiO ₃	50	196	118	0.1 M KOH	This work	
Ni ₂ P/CNT	88	124	53	0.5 M H ₂ SO ₄	8	
NiSe/NF	~25	96	120	1 M KOH	9	
Ni-C-N NS	34.7	60.9	32	0.5 M H ₂ SO ₄	10	
Ni/NiO/Ni foam	~0	145	43	1 M KOH	11	
TiN@Ni ₃ N	15	_	42.1	1 М КОН	12	
NiS ₂ NA/CC	70	149	69	1.0 M KOH	13	

Table S2. Comparison with some reported Ni-based HER catalysts.

Catalyst	Onset potential (V)	Overpotential (V) @10 mA/cm ²	Electrolyte	OER onset potential (V)	HER onset potential (V)	Electrolyte	reference
Ni/NiTiO ₃	1.55	1.63	1 M KOH	1.50	-0.05	0.1 M KOH	This work
CoP/Cu foil	~1.56	1.65	1 M KOH	1.52	-0.05	1 М КОН	14
Co ₉ S ₈ /WS ₂ /Ti plate	1.50	1.65	1 M KOH	1.40	-0.90	1 М КОН	15
NiSe/Ni foam	1.50	1.63	1 M KOH	_	~-0.025	1 M KOH	9
TiN@Ni ₃ N/T i foil	1.57	1.67	1 M KOH	1.52	~-0.015	1 M KOH	12

 Table S3. Comparison with some reported bifunctional electrocatalysts.

Table S4. The ICP-AES data of NT-15 in the electrolyte before and after long-term

working measurement.

Sample ID	Line	Mean	Units	RSD
OER before long-term working	Ni 231.604	< 0.0000	ug/mL	0.8698
OER before long-term working	Ni 221.648	< 0.0000	ug/mL	0.5181
OER after long-term working-1	Ni 231.604	< 0.0000	ug/mL	0.8742
OER after long-term working-1	Ni 221.648	< 0.0000	ug/mL	0.5716
OER after long-term working-2	Ni 231.604	< 0.0000	ug/mL	0.9321
OER after long-term working-2	Ni 221.648	< 0.0000	ug/mL	0.1648
HER before long-term working	Ni 231.604	< 0.0000	ug/mL	1.4593
HER before long-term working	Ni 221.648	< 0.0000	ug/mL	0.1792
HER after long-term working-1	Ni 231.604	< 0.0000	ug/mL	2.3155
HER after long-term working-1	Ni 221.648	< 0.0000	ug/mL	3.263
HER after long-term working-2	Ni 231.604	< 0.0000	ug/mL	0.482
HER after long-term working-2	Ni 221.648	< 0.0000	ug/mL	2.6068

Reference

- S1 J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu and Z. Tang, Adv. Energy Mater., 2015, 5, 1401880.
- S2 S. Ci, S. Mao, Y. Hou, S. Cui, H. Kim, R. Ren, Z. Wen and J. Chen, *J. Mater. Chem. A*, 2015, **3**, 7986–7993.
- S3 M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang and Y. Yan, J. Am. Chem. Soc., 2014, 136, 7077–7084.
- S4 L.-A. Stern, L. Feng, F. Song and X. Hu, Energy Environ. Sci., 2015, 8, 2347–2351.
- S5 J. S. Chen, J. Ren, M. Shalom, T. Fellinger and M. Antonietti, *ACS Appl. Mat. Interfaces*, 2016, **8**, 5509–5516.
- S6 L. Xiao, L. Zhang, M. Huang, S. Wang, X. Li and H. Zhu, J. Mater. Chem. A, 2016, 4, 14789–14795.
- S7 A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, **26**, 4661–4672.
- S8 Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu and C. Liu, J. Mater. Chem. A, 2015, 3, 1656–1665.
- S9 C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351–9355.
- S10 J. Yin, Q. Fan, Y. Li, F. Cheng, P. Zhou, P. Xi, and S. Sun, J. Am. Chem. Soc., 2016, 138, 14546–14549.
- S11 X. Yan, L. Tian, and X. Chen, J. Power Sources, 2015, 300, 336–343.
- S12 Q. Zhang, Y. Wang, Y. Wang, A. M. Alenizi, A. A. Elzatahry and G. Zheng, J. Mater. Chem. A, 2016, 4, 5713–5718.
- S13 C. Tang, Z. Pu, L. Qian, A.M. Asiri and X. Sun, *Electrochim. Acta*, 2015, 153, 508–514.
- S14 N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251–6254.
- S15 S. Peng, L. Li, J. Zhang, T. L. Tan, T. Zhang, D. Ji, X. Han, F. Cheng and S. Ramakrishna, *J. Mater. Chem. A*, 2017, DOI: 10.1039/C7TA08518D.