Vertical Bismuth Oxide Nanosheets with Enhanced Crystallinity: Promising Stable Anode for Rechargeable Alkaline Batteries

Haibing Zheng,^{a,c} Haodong Li,^c Minghao Yu,^c Min Zhang,^{a,*} ShileiXie,^a Yexiang Tong,^c Faliang Cheng, ^a and Xihong Lu^{b,c*}

^aGuangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Guangdong 523808, PR China *E-mail: minzhanggdu@sina.com (M. Zhang);

^bSchool of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China *E-mail: luxh6@mail.sysu.edu.cn (X. Lu)

^cMOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China

Calculations:

1. Single Electrode:

Areal capacitances of Bi_2O_3 electrodes were calculated from their CVs according to the following equations:

$$C_a = \frac{Q}{\Delta V \cdot S} \quad (1)$$

where C_a (mAh/cm²) is the areal capacitance, Q (C) is the average charge during the charging and discharging process, $\triangle V$ (V) is the potential window and S (cm²) is the area of Bi₂O₃ electrode (0.5 cm²).

Specific capacities of the Bi_2O_3 electrodes were calculated from their CVs according to the following equation:

$$C_s = \frac{\int_{0}^{V} I \times dV}{3600 \times v \times m} \qquad (2)$$

where C_s (mAh/g) is the specific capacity, V (V) is the voltage, I (mA) is the current, v (V/s) is scan rate and m (g) is the mass of Bi₂O₃ electrode.

Alternatively, specific capacities of electrode were measured by galvanostatic charge/discharge method based on the following equation:

$$C_a = \frac{\int_{0}^{\Delta t} I \times dt}{m} \quad (3)$$

where C_s (mAh/g) is the specific capacity, I (mA) is the constant discharge current, $\triangle t$ (h) is the discharging time and m (g) is the mass of Bi₂O₃ electrode.

Figure S1. (a) SEM images of the L-Bi₂O₃. (b) High-magnification SEM image of the L-Bi₂O₃.

Figure S2. (a) TEM images of the L-Bi₂O₃. (b) High-magnification TEM image of the L-Bi₂O₃.

Figure S3. (a) Survey XPS spectrum of Bi_2O_3 samples. (b) O 1s XPS spectra of the L- Bi_2O_3 and H- Bi_2O_3 samples.

Figure S4. CV curves at various scan rates of H-Bi₂O₃ samples

Figure S5. (a) Galvanostatic discharge curves of the L-Bi₂O₃ electrodes at a different current densities. (b) Mass capacity of the L-Bi₂O₃ and H-Bi₂O₃ electrodes obtained from galvanostatic discharge curves.

Figure S6. (a) EIS plots for $H-Bi_2O_3$ (black), and their corresponding simulation results (red). (b) for $L-Bi_2O_3$ and their simulation result.

Figure S7. XRD spectra of the Bi₂O₃ after different annealing time.

Figure S8. (a) Galvanostatic discharge curves at 16 mA/cm², and (b) Capacity as a function of the H-Bi₂O₃ electrodes obtained at different annealing times.

Samples	L-Bi ₂ O ₃	H-Bi ₂ O ₃
BET Surface Area (m²/g)	5.9	21.3
Pore Volume (cm ³ /g)	0.013587	0.002842

Table S1. The BET surface area and of L-Bi₂O₃ and H-Bi₂O₃ electrodes.

Table S2. A summary of the electrochemcial performance of the anodes.

Electrode	Capacity	Stability	Electrolyte	Ref.
AC-Bi ₂ O ₃	332.6 F/g	_	6 M KOH	1
	(1 A/g)			
Bi ₂ O ₃ NT5-GF	69.3 mF/cm ²	99%	6 M KOH	2
	(0.1 mA/cm ²)	(1000 cycles)		
Bi ₂ O ₃ /GN	3683 mF/cm ²	90%	6 M KOH	3
	(20 mA/cm ²)	(1000 cycles)		
graphene-Bi ₂ O ₃	255 F/g	65%	6 M KOH	4
	(1 A/g)	(1000 cycles)		
ESCNF@Bi2O3	530 mF/cm ²	87%	1 M KOH	5
	(1 mA/cm^2)	(1000 cycles)		
Bi-200	90.5 mAh/g	96%	1 M KOH	6
	(4.5 A/g)	(10000 cycles)		
VO	0.28 F/cm ²	—	5 M LiCl	7
	(10 mv/s)			
OCFP	1.56 F/cm ²	99%	$1 \text{ M H}_2 \text{SO}_4$	8
	(5 mA/cm^2)	(20000 cycles)		

Highly	297 F/g	90.6 %	1 M KOH	9
Functionalized	(30 A/g)	(10000 cycles)		
Activated Carbons				
VN-RGO	270 mAh/g	90 %	1 M LiPF ₆	10
	(0.1 A/g)	(2000 cycles)	(EC/DEC)	
H-Bi ₂ O ₃	0.14 mAh/cm ²	71.4%	1 M KOH	This work
	(4 mA/cm^2)	(5000 cycles)		

Table S3. Values of the equivalent circuit components used for the EIS date of L- Bi_2O_3 and H- Bi_2O_3 sample.

compo	nent	$\mathrm{Rs}\left(\Omega\right)$	$\operatorname{Ret}\left(\Omega\right)$	W (S s ^{1/2})		C (F)	
				R	Т	Р	
Fitted	L-Bi ₂ O ₃	4.646	25.7	73.32	337.1	0.285	0.0000218
values	H-Bi ₂ O ₃	3.417	1.471	1729	1768	0.522	0.000897

Table S4. The Bi concentration in the electrolyte for L-Bi₂O₃ and H-Bi₂O₃ electrodes after 5000 cycles.

samples	L-Bi ₂ O ₃	H-Bi ₂ O ₃
Bi concentration (mg/L)	3.25	1.11

References

- 1. S. X. Wang, C. C. Jin and W. J. Qian, J. Alloy. Compd., 2014, 615, 12-17.
- 2. K. Gopalsamy, Z. Xu, B. Zheng, T. Huang, L. Kou, X. Zhao and C. Gao, *Nanoscale*, 2014, 6, 8595-8600.
- 3. R. Liu, L. Ma, G. Niu, X. Li, E. Li, Y. Bai and G. Yuan, *Adv. Funct. Mater.*, 2017, 27, 1701635.
- 4. H. W. Wang, Z. A. Hu, Y. Q. Chang, Y. L. Chen, Z. Q. Lei, Z. Y. Zhang and Y. Y. Yang, *Electrochim. Acta*, 2010, 55, 8974-8980.
- 5. L. Li, X. Zhang, Z. Zhang, M. Zhang, L. Cong, Y. Pan and S. Lin, *J. Mater. Chem. A*, 2016, 4, 16635-16644.
- 6. Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu, X. Lu and Y. Tong, *Adv. Mater.*, 2016, 28, 9188-9195.
- 7. T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang, T. Liu, C. Liang, Y. Tong and Y. Li, *Adv. Mater.*, 2014, 26, 5869.
- 8. Z. Wang, Y. Han, Y. Zeng, Y. Qie, Y. Wang, D. Zheng, X. Lu and Y. Tong, *J. Mater. Chem. A*, 2016, 4, 5828-5833.
- 9. Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C. M. B. Holt, X. Tan and D. Mitlin, *Energy Environ. Sci.*, 2014, 7, 1708-1718.
- 10. R. Wang, J. Lang, P. Zhang, Z. Lin and X. Yan, *Adv. Funct. Mater.*, 2015, 25, 2270-2278.