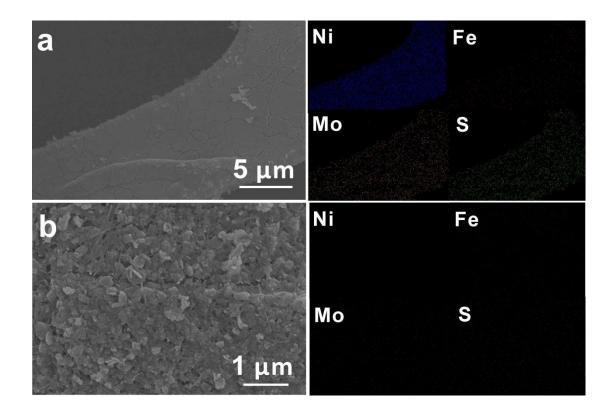
Supporting information:

From lamellar to hierarchical: Overcoming the diffusion barriers of sulfide intercalated layered double hydroxide for highly efficient water treatment

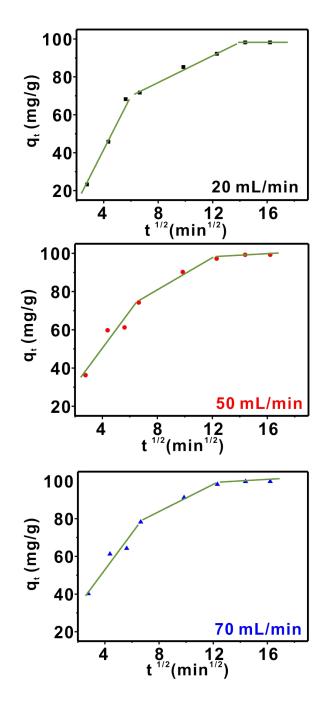
Jing Wang,^{ac} Zhenyu Li,^a Na Hu,^b Lizhi Liu, ^a Chuanhui Huang,^c Qingfeng Yang,^a Yanru Wang,^a Yourui Suo,^b Tie Wang,^c* Jianlong Wang ^a*

a. College of Food Science and Engineering, Northwest A&F University, Yangling,712100, Shaanxi, P.R. China


b. Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest
 Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, 810008,
 Qinghai, P.R. China

c. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, #2 Zhongguancun North First Street, 100190, Beijing, P.R. China

Corresponding Author


* E-mail: Jianlong Wang, wanglong79@nwsuaf.edu.cn and Tie Wang, wangtie@iccas.ac.cn

S 1. EDX mapping of h-NFL-S@nf and l-NFL-S@nf

Figure S1. EDX mapping of a) hierarchical NFL-S and b) lamellar NFL-S, and the homogeneously distribution of Ni, Fe, Mo and S on the substrate of Ni foam.

S 2. Adsorption kinetic parameters

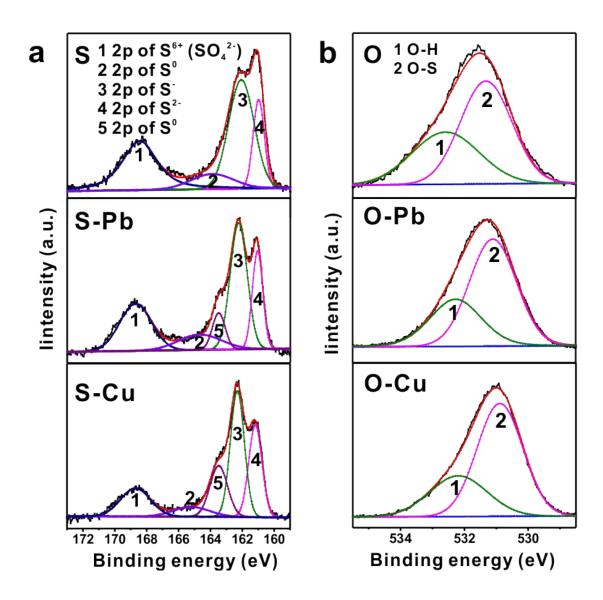


Figure S2. Intra-particle diffusion model (Weber-Morris) of Pb²⁺ under different velocity of fluid flow.

Velocity (mL/min)	pesudo-second-order				pecudo-first-order			intra-particle diffusion		
	q _e ,exp	k ₂	q _e ,cal	R ²	k_1	q _e	R ²	ki	c _i	R ²
		(g/mg min)	(mg/g)		(min ⁻¹)	(mg/g)				
20	91.83	0.0002	104.94	0.994	0.019	95.10	0.993	12.412	0.441	0.995
50	97.46	0.0003	107.52	0.997	0.027	95.17	0.978	9.660	30.3595	0.951
70	97.48	0.0004	106.38	0.999	0.030	95.50	0.979	9.793	39.129	0.976

 Table S1. Kinetic parameters of Pb(II) adsorption on h-NFL-S@nf under different velocity of fluid flow.

S3. XPS S 2p and O 1s spectra of the NFL-S before and after heavy metal adsorption

Figure S3. XPS a) S 2p and b) O 1s spectra of the NFL-S before and after heavy metal adsorption (Pb^{2+} and Cu^{2+}).

S4. Reusability study

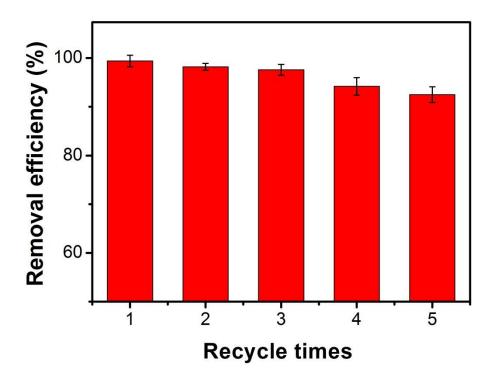


Figure S4. Pb(II) removal efficiency and recycling of h-NFL-S@nf. The initial concentration of Pb(II) is 10 mg L⁻¹.