Supporting information

rGO/SnS₂/TiO₂ Heterostructured Composite with Dual-Confinement for Enhanced Lithium-Ion Storage

Hong-En Wang^{a,b,c}, Xu Zhao^b, Xuecheng Li^a, Zhenyu Wang^d, Chaofeng Liu^b, Zhouguang Lu^{d,*},

Wenjun Zhang^{c,*}, Guozhong Cao^{b,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan

University of Technology, Wuhan, China.

^b Department of Materials Science and Engineering, University of Washington, Seattle, WA, US. *Email:

gzcao@u.washington.edu

^c Department of Materials Science and Engineering & Center Of Super Diamond and Advanced Films

(COSDAF), City University of Hong Kong, Hong Kong, China. *Email: apwjzh@cityu.edu.hk

^d Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen, China. *Email: <u>luzg@sustc.edu.cn</u>

Figure S1. TGA curves of rGO/SnS_2 and $rGO/SnS_2/TiO_2$ tested in air with a temperature ramping rate of 5 °C/min.

The calculation of the SnS_2 in rGO/ SnS_2 was referring the following two chemical reaction equations:

$$SnS_2+3O_2 \rightarrow SnO_2+2SO_2\uparrow$$
, $rGO+O_2 \rightarrow CO_2\uparrow$.

Ideally, rGO/SnS₂ composite will be completely converted into SnO₂ after TGA analysis in air over 800 °C. Therefore, in 1 gram of rGO/SnS₂ sample, one can assume the mass of SnS₂ is *x* gram and rGO is (1-*x*) gram. The molar weights of SnS₂ and SnO₂ are 182.7 and 150.7, respectively. Therefore, the remaining weight of SnO₂ after TGA test can be calculated as (x/182.7)×150.7 gram, and the corresponding weight loss is [1-(x/182.7)×150.7] gram. Similarly, SnO₂/TiO₂ composite can be obtained after TGA measurement of rGO/SnS₂/TiO₂ composite sample in air, and the mass content of TiO₂ in the rGO/SnS₂/TiO₂ can be calculated given that the rGO and SnS₂ ratio has already been determined. From **Figure S1**, the mass content of SnS₂ in rGO/SnS₂ and TiO₂ in rGO/SnS₂@TiO₂ composite are ~74 wt% and ~14 wt%, respectively.

Figure S2. High resolution XPS spectra of (a) C1s, (b) N1s in rGO/SnS₂ sample, and (c) S2p in rGO/SnS₂ and rGO/SnS₂/TiO₂.

Figure S3. FTIR spectra of (a) rGO/SnS_2 and (b) $rGO/SnS_2/TiO_2$ samples.

Figure S4. (a) SEM and (b) TEM images of rGO/SnS_2 composite sample.

Figure S5. Electrochemical cycling property of pure rGO nanosheets electrode in Lihalf cells within a voltage region of $3\sim0.05$ V (vs. Li⁺/Li) at a current density of 1 A g^{-1} .

Figure S6. The 200th galvanostatic charge/discharge profiles of the $rGO/SnS_2/TiO_2$ and rGO/SnS_2 electrodes at 0.5 A g⁻¹.

Figure S7. Ex situ SEM iamges of (a, b) $rGO/SnS_2/TiO_2$ electrode and (c) rGO/SnS_2 electrode after cycling for 200 cycles.