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1. Detailed calculations  

For primitive cell optimization and elastic property calculations, a 6×6×6 Monkhorst-

Pack1 k-point grid in the Brillouin Zone is sampled. The convergence criteria for the total 

energies and ionic forces are set to 10-5 eV and 10−3 eV/Å, respectively. For the density of 

states (DOS) calculations, a 12×12×12 k-mesh is used, and the Gaussian smearing method 

with a smearing width of 0.05 eV is used. The Heyd-Scuseria-Erznerhof (HSE06)2 hybrid 

functional is used to calculate the band structure of Li3OCl. In terms of band gaps 

calculations, hybrid Hartree-Fock/DFT approaches3 are used since it has been proven more 

reliable than the GGA-PBE functional. 

For phonon data calculations, the PHONOPY code is used for the calculation of the 

phonon dispersion spectrum and thermodynamic properties,4 which directly uses the dynamic 

matrices calculated by the density functional perturbation theory (DFPT)5 implemented in 

VASP. A 4×4×4 k-point grid and 10-8 eV/Å electronic forces convergence are used. For 

defects formation energy and Li+ migration energy barrier calculations, a 3×3×3 supercell of 

the primitive cubic-unit cell (containing 135 atoms) is used with a 2×2×2 k-point grid and 

5×10-2 eV/Å ionic forces convergence. The Li+ migration energy barriers are obtained using 
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the climbing image nudged elastic band (CI-NEB) method,6 which optimizes the migration 

pathway and determines the saddle points along Li+ migration pathway.7 

2. Mechanical properties
The bulk modulus and shear modulus can be obtained by the following expression 8

 ,                                                                                                         (1)
𝐵𝑉 = 𝐵𝑅 =

𝐶11 + 2𝐶12

3

, and .                                                                    
𝐺𝑉 =

𝐶11 ‒ 𝐶12 + 3𝐶44

5
𝐺𝑅 =

5(𝐶11 ‒ 𝐶12)𝐶44

4𝐶44 + 3(𝐶11 ‒ 𝐶12)

(2)

where ,  and , , are bulk moduli and shear moduli obtained from the Voigt (V) 9 or 𝐵𝑉 𝐵𝑅 𝐺𝑉 𝐺𝑅

Reuss (R) 10 schemes, respectively; C11, C12, and C44 are the independent elastic constants. 

However, the upper and lower limits of the polycrystalline bulk and shear modulus can 

be obtained by Voigt and Reuss schemes, respectively. Therefore, in the present work, to 

obtain accurately elastic moduli, the Voigt-Reuss-Hill approximations 11 are applied to 

estimate the average bulk (B) and shear (G) modulus in the following expressions

,                                                    (3)
𝐵 =

𝐵𝑉 + 𝐵𝑅

2

,                          (4)
𝐺 =

𝐺𝑉 + 𝐺𝑅

2

where B represents the resistance to volume change by an applied pressure; G is the 

opposition to reversible shear deformations. Generally speaking, G can better predict the 

hardness of a material than B. Furthermore, the value of B/G (known as the Pugh’s ratio) is 

generally used to evaluate the ductility/brittleness nature of materials based on the Pugh’s 

criterion.12 When the B/G ratio is larger than 1.75, the material is regarded as ductile; 

otherwise it is brittle.
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From the obtained B and G, other elastic parameters, i. e. Young’s modulus (E) and 

Poisson’s ratio (ν), can be calculated by the following expression8

 ,                                                                                                                       (5)
𝐸 =

9𝐵𝐺
3𝐵 + 𝐺

.                                                                                                                     (6)
𝜈 =

3𝐵 ‒ 2𝐺
2(3𝐵 + 𝐺)

In addition, a dimensionless quantity AG representing the degree of elastic anisotropy in 

shear for the cubic crystal is also calculated by 13

 ,                                                                                                                    (7)
𝐴𝐺 =

𝐺𝑉 ‒ 𝐺𝑅

𝐺𝑉 + 𝐺𝑅

AG is zero for the elastically isotropic crystals. The larger the value AG, the higher the elastic 

anisotropy of crystals.

3. Thermodynamic properties 

3.1 Thermal expansion coefficient 

To obtain the volume thermal expansion coefficient (αV) of cubic Li3OCl, we calculated 

the vibrational contribution to the Helmholtz free energy of the system. The Helmholtz free 

energy F(V, T) of the crystal as a function of temperature and volume can be approximately is 

expressed by 

𝐹(𝑉, 𝑇) = 𝐹𝑒𝑙(𝑉, 𝑇) + 𝐹𝑣𝑖𝑏(𝑉,𝑇)

                                           (8)𝐹𝑒𝑙(𝑣𝑖𝑏) = 𝑈𝑒𝑙(𝑣𝑖𝑏) ‒ 𝑇𝑆𝑒𝑙(𝑣𝑖𝑏)

where  and  denote the electrons and phonons contributions to the free energy, 𝐹𝑒𝑙 𝐹𝑣𝑖𝑏

respectively. Generally, the entropy ( ) contribution from electrons is negligible, and  𝑆𝑒𝑙 𝑈𝑒𝑙

contribution can be calculated from DFT. From QHA,  can be written by:𝐹𝑣𝑖𝑏

                            (9)
𝐹𝑣𝑖𝑏 =

1
2∑

𝑞,𝜈

ℏ𝜔𝑞,𝜈(𝑉) + 𝐾𝐵𝑇∑
𝑞,𝜈

𝐼𝑛[1 ‒ 𝑒𝑥𝑝( ‒ ℏ𝜔𝑞,𝜈(𝑉)/𝐾𝐵𝑇)]
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where q and  are the wave vector and band index, respectively;  is the phonon frequency 𝜈 𝜔𝑞,𝜈

with a wave vector q and band , , and   denote Planck’s constant, Boltzmann constant 𝜈; ℏ 𝐾𝐵 𝑇

and temperature, respectively. The vibrational entropy (Svib) can be calculated by

 
𝑆𝑣𝑖𝑏 =‒ (∂𝐹𝑣𝑖𝑏

∂𝑇 )𝑉

                                   (10)
=  

1
2𝑇∑

𝑞,𝜐

ℏ𝜔𝑞,𝜈coth (ℏ𝜔𝑞,𝜈

2𝐾𝐵𝑇) ‒ 𝐾𝐵∑
𝑞,𝜐

ln [2sinh (ℏ𝜔𝑞,𝜈

2𝐾𝐵𝑇)]
The vibrational free energy and entropy of Li3OCl have also been calculated using Eqs. 

(9) and (10) and plotted in Figure S1. The vibrational free energy at 0 K is the zero point 

energy of the system. The vibrational free energy decreases as temperature increases, whereas 

the entropy increases with temperature. 

Figure S2 shows the calculated Helmholtz free energy of Li3OCl using QHA (Eq. (8)). 

The black solid lines are the fitted curves at a given temperature ranging from 200 to 900 K, 

and different symbols in each curve correspond to the minimum energy and equilibrium 

volume. The red dash line that connects each equilibrium volumes is only for guiding eyes. It 

can be seen that the equilibrium volume and free energy of the system increases and 

decreases with temperature, respectively.

Fig. S1 Vibrational free energy and entropy of Li3OCl as a function of temperature. 
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Fig. S2 Helmholtz free energy of Li3OCl as a function of primitive cell volume at different 

temperatures. 

Next, the volume thermal expansion coefficient (αV) of Li3OCl is calculated by

,                                                                                                               (11)
𝛼 =

1
𝑉(𝑇)

𝑑𝑉(𝑇)
𝑑𝑇

where V is the volume of a cell. 

3.2 Thermal conductivity

Generally, the thermal conductivity (κL) of a solid material has contributions from both 

electrons and phonons. As discussed above, Li3OCl is a wide band gap insulator and heat 

transport through electrons can be negligibly small. Therefore, we only considered phonon 

contribution to thermal conductivity ( ) for Li3OCl using the following Slack14 expression𝜅𝐿

 ,                                                                                                             (12)
𝜅𝐿 = 𝐴

�̅�𝜃3
𝐷𝛿

𝛾2𝑛2/3𝑇

here n is the number of atoms in the primitive unit cell; δ is the cube root of average atomic 

volume; θD is the Debye temperature;  is the average mass of the atoms in the crystal; A is a �̅�

collection of physical constants (3.1×10-6 if  is in W/mK);  in atomic mass unit; δ in 𝜅 �̅�

angstroms; γ is the Grüneisen parameter, which is a direct measure of the anharmonicity of 
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the bonds, and can be expressed as15

 ,                                                                                                                   (13)
𝛾 =

3𝛼𝑉𝐵𝑉

𝐶𝑉

where αV is the volume thermal expansion coefficient; B is the isothermal bulk modulus; V is 

the molar volume and CV is the heat capacity at constant volume. To calculate the thermal 

conductivity, CV and θD must be obtained first. The  can be calculated as a function of 𝐶𝑉

temperature using the following relations

𝐶𝑉 =‒ 𝑇(∂2𝐹𝑣𝑖𝑏

∂𝑇2 )𝑉

   .                                                                                    (14)

= ∑
𝑗,𝑘

𝐾𝐵(ℏ𝜔𝑗,𝑘

𝐾𝐵𝑇 )2
𝑒𝑥𝑝(ℏ𝜔𝑗,𝑘/𝐾𝐵𝑇)

[exp (ℏ𝜔𝑗,𝑘

𝐾𝐵𝑇 ) ‒ 1]2

Figure S3 shows the heat capacity CV as a function of temperature. It can be seen that at 

lower temperatures, CV increases rapidly with temperatures, in proportional with T3 and 

follows the typical Debye model, as shown in the insert of Figure S3. As temperature 

increases to 400 K, the heat capacity CV reaches 1.17×10-3 eV/K, very close the Dulong-Petit 

limit of solid materials (1.29×10-3 eV/K). In addition, due to the anharmonic approximations 

of the Debye model used here, we can determine the Debye temperatures (θD) by fitting the 

CV curve at the low temperature range (see insert of Figure S3)  with the Debye model of the 

following

,                                                                                                 (15)
𝐶𝑉 = (

12

5𝜃3
𝐷

𝜋4𝑘𝐵𝑛𝑁𝐴)𝑇3

where NA is the Avogadro constant, and n is the number of atoms in the primitive unit cell. 

From Eq. (15), we estimated the Debye temperature (θD) to be ~412.6 K through fitting with 

cubic polynomial CV curve at a temperature range of 0 to 30 K. 

Finally, through the obtained data from Eq. (13) to (15), the thermal conductivity ( ) 𝜅𝐿

of Li3OCl can be calculated by using Eq. (12). 
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Fig. S3 Temperature-dependent specific heat at constant volume of Li3OCl, The inset shows 

the typical T3 Debye model behavior at low temperature ranging from 0 to 30 K.

4. Defect chemistry

Table S1 Energy difference of different defect 

configurations

Defect 

types

Defect 

sites

Defect pair 

distance (Å)

Energy 

difference (eV)

V1 2.763 0

V2 3.908 0.032

V3 4.786 0.071

V4 5.526 0.038

V5 6.179 0.003

Frenkel 

defect 

( - )V '
Li Li•i

V6 6.768 0.069

V7 7.311 0.100

N1 2.763 0.108

N2 4.786 0

N3 6.179 0.157

LiCl 

defect 

( - )V '
Li V •

Cl
N4 7.311 0.188

Aj 1.954/1.954 0

Op 1.954/1.954 0.007

S1 4.369/1.954 0.705

Li2O 

defect 

( - )2V '
Li V••

O
S2 5.862/1.954 0.698
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T 1.819 0.118

D1 1.819 0

D2 1.777 0.012

OCl defect 

( )O '
Cl - Li•i

S 4.066 0.452

Fig. S4 The most-stable structure of the Frenkel defect in the 3×3×3 supercell and the local 

structure around the Li vacancy and interstitial Li-Li dumbbell. 

Figure S4 shows the lowest energy configuration (V1) in the Frenkel defect case (d). For 

the surrounding , these are dominated by the motion of the nearest-neighbor O anion 𝑉 '
𝐿𝑖

(labeled as O1 and O2 in Figure S4). The bond length of O1-O2 is increase by ~0.316 Å, in 

contrast to the defect-free system (O-O bonding ~3.908 Å) due to Coulombic repulsion. This 

directly results in a shortening of the O1-Li1 and O2-Li2 bonds by ~0.127 Å and ~0.077 Å, 

respectively. Moreover, the nearest-neighbor Li+ moves toward  due to the Coulombic 𝑉 '
𝐿𝑖

attraction, and the remaining four O-Li bonds are shortened by an average of ~0.053 Å, 
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compared to the defect-free system (O-Li bond 1.954 Å) in the [O1Li5] square pyramids. For 

interstitial Li-Li dumbbells surroundings, the additional Li atom shares a vertex with another 

Li in a Li6O octahedron, which thus has to move away from the vertex of the octahedron and 

forms a Li7O polyhedron. Moreover, the two Li atoms form a Li-Li dumbbell that is centered 

on the original Li site and oriented parallel to the edges of the Li6O octahedron. Compared to 

the perfect crystal, the nearest-neighbor O atoms (O2 and O3 in Figure S4) move toward the 

Li dumbbell by ~0.474 Å due to Coulombic attraction. Conversely, the near-neighbor Li 

atoms shifted away from the Li dumbbell, which results in the Li-O bond. However, Li2-O2 

distance is increased by an average of 0.104 Å in the polyhedron made of O2, O3, and Li 

atoms. The Cl atoms and other Li-O bond (such as O4-Li in Figure S4) that are far away from 

the defect in the supercell do not change. It indicates that the defect (  or ) only gives rise 𝑉 '
𝐿𝑖 𝐿𝑖•

𝑖

to a local atomic and geometric structure change, which is consistent with the ionic nature of 

the material. The results is in good agreement with those by Stegmaier et al. 16

5. Discussions on Li+ migration mechanisms
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Fig. S5 Differential charge density of LiCl defect pair case in 3×3×3 Li3OCl supercell. The 

yellow contour represents the charge distribution, and the value of isosurface is set to be 0.1 

e/Å3.

Fig. S6 Differential charge density of Li2O defect pair case in 3×3×3 Li3OCl supercell. 

The yellow contour represents the charge distribution, and the value of isosurface is set to be 

0.1 e/Å3.

Fig. S7 Schematic drawing of the migration pathway of    in the Frenkel defect case𝑉 '
𝐿𝑖
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In the diffusion pathway, a  moves to the periodic image after a four-step migration: 𝑉 '
𝐿𝑖

initial state (V1)→V2→V5→V2-2→final state (V1).

Fig. S8 Schematic drawing of the migration pathway of   in the Frenkel defect case𝐿𝑖•
𝑖
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