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S1. Experimental details 

C-S-H precipitation kinetic data were collected using a home-made laboratory-scale reactor 

working in a semibatch manner, the details of which are described elsewhere.1 The system was operated 

at 298.15 K and atmospheric pressure under nitrogen to avoid carbonation. With the aim of producing 

C-S-H of Ca:Si = 2 as the final precipitate, 22 mL of a 1 M aqueous NaOH solution was mixed with 200 

mL of a 0.01 M Na2SiO3.5H2O solution and the mixture was added in a dropwise manner to a premixed 

200 mL solution of 0.02 M Ca(NO3)2.4H2O (Fig. S1). Kinetic data were collected for two different flow 

rates of the silicate + NaOH stream (Q = 2.00 and 0.50 mL.min-1). Further details on the 

characterization, as well as atomistic structure from NMR measurements and atomistic modeling of this 

C-S-H can be found in an earlier work by Kumar et al.1 

 

Fig. S1. Schematic representation of semi-batch reactor used for experimental data collection. 

S2. Fundamentals of population balance equation 

In this section we present a brief overview on population balance equation and its solution using 

Quadrature Method of Moments (QMOM). For a detailed introduction to PBE, the reader is referred to 

the seminal work of Hulburt and Katz,2 and that by Randolph and Larson.3 For an exhaustive primer on 

various quadrature-based methods the text by Marchisio and Fox is an excellent reference.4 

Consider a system containing particulate material. In such a system, a particle can be represented 

by two sets of coordinates denoted as external and internal coordinates. External coordinates represent 
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the spatial position of the particle in the physical space, 𝐱𝐱 ≡ (x1, x2, x3). On the other hand, internal 

coordinates describe some intrinsic properties of the population, e.g., particle size, particle velocity, 

temperature, composition, etc. To quantitatively describe the variations in the population of particles 

across the external and internal spaces one may resort to the so-called number-density function (NDF). 

Consider a population of dispersed entities in an infinitesimal control volume d𝐱𝐱 ≡ dx1dx2dx3 centered 

at the physical point 𝐱𝐱 in the external space. Let 𝐋𝐋 ≡ (L1, L2, … , LM) be the internal coordinate vector 

containing the respective M internal coordinates. The NDF n(t, 𝐱𝐱,𝐋𝐋) is defined as the number of 

particles in the infinitesimal physical volume d𝐱𝐱 and infinitesimal phase space volume d𝐋𝐋. The NDF is 

therefore a function of time (t), space (x), and the internal coordinate vector (L) and may be further 

normalized by the total physical volume of the system being considered. It is worth noting the NDF is 

an average quantity representative of particle populations in infinitesimal control volumes with 

differential dimensions in both internal and external spaces.4 Hereafter, we concentrate on population 

distributions which are homogeneous across the external space, and only track particle size as an 

internal coordinate (univariate PBE). Here, homogeneity assumption is justified as we are working with 

a well-mixed, relatively small lab-scale reactor. Hence, NDF would merely be a function of time and 

particle size, n(t, L). 

The second important definition is that of kth order moment of the density function 

mk ≡ � Lk n(t, L)dL
 

ΩL
 (S1) 

where ΩL is the particle size domain (theoretically 0-∞). As it can be readily understood from 

equation (1), for univariate size-based NDF the zeroth and first moments represent the total particle 

number and total particle length per unit volume of the system, respectively. Moreover, the second and 

third moments are proportional to the total particle surface area and total particle volume per unit system 

volume, respectively. In the two latter cases, the proportionality constants are area and volume shape 

factors (kA and kV, respectively). One can further convert particle volume to particle mass using the 



S4 
 

particle density (ρsolid). Number-averaged values can be easily obtained through dividing the respective 

moment by the zeroth moment.3 Furthermore, an average particle size can be defined by mk+1/mk for 

any value of k (e.g., for Sauter mean diameter k = 2).4 Other useful definitions can be found in general 

texts.3,4 

For a homogeneous system (uniform NDF across the physical space) the general population 

balance equation describing the variation of NDF over time and phase space can be written as3 

∂n
∂t

+
∂
∂L

(nGL) + n
d(lnV)

dt
= −�

Qjnj
V

F

j=1

+ h (S2) 

where GL is the rate of change of particle size (dL
dt

; linear growth rate), V is the system volume, F is 

the number of input and output flows (taken as positive for flow out of the suspension and negative for 

flow into the suspension), and h represents discontinuous jumps signifying discrete events (e.g., 

nucleation, aggregation, or breakage).4 Now let us multiply both sides of equation (2) by Lk and 

integrate from zero to infinity. After simplification 

dmk

dt
+ mk

d(lnV)
dt

= k� n(t, L)GLLk−1dL
∞

0
−�

Qjmk,j

V
+ hk���

F

j=1

 (S3) 

where mk,j is the kth moment in the jth flow and hk��� is 

hk��� = � hLkdL
∞

0
 (S4) 

In order to solve equation (3) for a particulate system, the set of equations for the first k moments 

of interest should be closed, i.e., involve only functions of the moments themselves, which is in most 

cases not the case (for example, with size-dependent growth rate, the integral on the right-hand side of 

equation (3) cannot be directly evaluated).5,6 Since moments depend on time, the moment closure 

problem has to be solved at every time step during numerical integration of differential equations. 

Therefore, the numerical algorithm for its solution has to be efficient and fast. For this purpose 
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quadrature-based moment methods that reconstruct the NDF from a finite set of moments will be 

employed.4 

In univariate QMOM the closure problem (i.e., calculating integrals dependent on n(t, L)) is 

overcome by resorting to an interpolation formula 

� n(t, L)g(L)dL ≈�wαg(Lα)
N

α=1

 

ΩL
 (S5) 

where g(L) is any function of interest while wα and Lα are, respectively, the weights and nodes of 

the interpolation formula, and N is the number of nodes used to approximate the NDF (quadrature 

order). Unit consistency dictates that wα have units equivalent to n(t, L)dL (# particles.m-3 suspension). 

QMOM takes advantage of Gaussian quadrature of order N which offers a degree of accuracy of 2N. 

Therefore, it will be able to capture the first 2N moments of the weight function. Conversely, N nodes 

(abscissas) and N weights shall be obtained by solving the following nonlinear system, assuming the 

knowledge of the first 2N moments of NDF 

m0 = �wα

N

α=1

 

(S6) 
m1 = �wαLα

N

α=1

 

… 

m2N−1 = �wαLα2N−1
N

α=1

 

Since the above system requires a very good initial guess in order to ensure convergence, one may 

take advantage of the orthogonal polynomials theorem. According to this theory, a Gaussian quadrature 

is an interpolation formula whose N nodes are the roots of polynomial PN(L) orthogonal to the weight 

function n(L).7 Among the algorithms available in order to calculate the weights and abscissas from the 

knowledge of a moment set, the product-difference (PD) algorithm of Gordon8 and the Wheeler 
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algorithm9,10 are useful for an arbitrary NDF. However, the latter is more stable, and is able to handle 

distributions with zero mean (m1 = 0).4 Fig. S2 schematically shows the application of Wheeler 

algorithm in order to approximate a normal distribution using 3, 4, and 5 quadrature nodes. 

 

Fig. S2. Quadrature approximation of a normal distribution using Wheeler algorithm. 

In this study, we have implemented primary nucleation, true secondary nucleation, and molecular 

growth as the subprocesses that govern the overall precipitation reaction. Inserting primary and 

secondary nucleation rates into equation 4, 

hk��� = (LI)k × JI(t) + (LII)k × JII(t) (S7) 

where JI and JII are primary and secondary nucleation rates (# crystallites.m-3.s-1), and finally, LI 

and LII are the corresponding critical size of nuclei (m). Also using equation 5 

k� n(t, L)GLLk−1dL
∞

0
≈ k � wα(t)G�Lα(t)� 

N

 α=1

(Lα(t))k−1;  k = 0,1, … ,2N − 1 (S8) 

For our semi-batch reaction scheme with constant inlet flow rate and no particle inflow, 

combining equations S3, S7, S8 gives the final form of PBE set to be solved (equation 1 in the main 

text; the only flow rate, coming into the reactor, is denoted by Q). Note that working with dilute 

solutions (ionic strength < 0.08 mol.kg-1 solvent) the volume change on mixing is negligible as also 

confirmed by calculations in OLI Studio.11 
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S3. Aqueous speciation and thermodynamic driving force for solid formation 

Among the solid solution models available for C-S-H solid phase those proposed by Berner,12,13 

Kersten,14 and Carey and Lichtner15 allow for the formation of a homogeneous phase with Ca:Si = 2 

(the composition of interest to us). Other models cannot describe such a solid composition (at least as a 

single homogeneous phase) and they attempt to model the solid solution—aqueous solution equilibrium 

by forcing portlandite equilibrium beyond some Ca:Si ratio which is always less than 2 (e.g., > 1.5 in 

the model of Rahman et al.16 and > 1.5-1.9 in the model of Kulik and Kersten17).18 The former is in 

contrast to our observation of uniform C-S-H (Ca:Si = 2) precipitation without any portlandite forming 

from solution.1 Our C-S-H phase corresponds to 1:1 solid solution of Ca(OH)2 and CaH2SiO4 end-

members in Berner’s model,12 1:1 solid solution of Ca(OH)2 and CaHSiO3.5.1.5H2O end-members in 

Kersten’s model,14 and 1:2 solid solution of SiO2.2H2O and Ca(OH)2 end-members in Carey and 

Lichtner’s model.15 

As Prieto discussed, for practical purposes the so-called stoichiometric solubility product shall be 

used to describe the dissolution/precipitation behavior of solid solutions. In reality the former represents 

a metastable equilibrium condition which assumes the solid solution to be a stoichiometric phase (i.e., a 

pure single-component solid with fixed stoichiometry) dissolving/precipitating in a congruent manner. 

This concept arises from experimental observations that solid solutions tend to dissolve in a congruent 

manner until an initial saturation is built up. Nevertheless, an aqueous solution may remain in 

metastable state of saturation with respect to stoichiometric solid because reaching the true equilibrium 

necessitates dissolution-reprecipitation of the solid solution, which can be an extremely sluggish 

process.19,20 Indeed, according to Berner such a simplifying assumption is reasonable for C-S-H 

precipitation at room temperature within the time scales of experimental setups.12 Having the former in 

mind and in line with many studies in the literature that use the concept of stoichiometric solubility 

product in explaining the precipitation of solid solutions,21-26 we will apply the same framework to 

define the thermodynamic driving force for C-S-H precipitation. By definition, the stoichiometric 
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solubility product (superscript ‘st’) for a binary solid solution with end-member solubility constants K1 

and K2 reads 

Ksp
st = (K1X1λ1)X1(K2X2λ2)X2 (S9) 

where X1 and X2  =  1 − X1 are mole fractions of end-members composing one mole of solid 

solution, and λ1 and λ2 are their activity coefficients, respectively. Writing the dissolution reaction for 

our particular C-S-H phase according to the three selected models described earlier 

Berner’s model: (CaO)(SiO2)0.5(H2O)(s) → Ca2+ + OH− + 1
2

H2SiO4
2− 

(S10) 
Ksp
Berner = 9.99 × 10−8; νBerner =

5
2

 

Kersten’s model: (CaO)(SiO2)1
2
(H2O)3

2
(s) → CaOH+ + 1

2
OH− + 1

2
H3SiO4

− 
(S11) 

Ksp
Kersten = 3.54 × 10−7; νKersten = 2 

Carey and Lichtner’s model: 

(CaO)(SiO2)0.5(H2O)(s) → Ca2+ + OH− +
1
2

H2SiO4
2− (S12) 

Ksp
CL = 5.89 × 10−7; νCL =

7
3

 

where ν is the total number of ions produced by one of formula unit of solid upon dissolution. 

Knowing the solubility product, the (molal) activities of aqueous species (Ca2+, OH-, and H2SiO4
2- for 

the model of Berner; CaOH+, OH-, and H3SiO4
- for the model of Kersten; and Ca2+, OH-, and H4SiO4 for 

the model of Carey and Lichtner) are needed for the calculation of ionic activity products (IAP)27,28 

IAPBerner = aCa2+ × aOH− × aH2SiO42−
1
2  (S13) 

IAPKersten = aCaOH+ × aOH−
1
2 × aH3SiO4−

1
2  (S14) 

IAPCL = aCa2+
2
3 × aOH−

4
3 × aH4SiO4

1
3  (S15) 
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with a  denoting molal activities of different aqueous species. Subsequently, the supersaturation 

ratio is defined as29 

SmodelX = �
IAPmodelX

Ksp
modelX �

1/νmodelX

 (S16) 

with modelX denoting respective C-S-H models. In order to calculate the molal activities used in 

IAP expressions (equations (13-15)), consistent with the general practice used in modeling precipitation 

processes, we assume that upon any perturbation (i.e., overall change of elemental balance) the aqueous 

species attain equilibrium state quickly compared to the time-scale of solid formation process.30-36 In 

this manner, the system is assumed to always experience a locally-equilibrated state where aqueous 

species attain their equilibrium distribution quickly before they contribute to the formation of solid 

phase, the latter being the rate limiting step.31,37 This view necessitates the calculation of speciation in 

the aqueous phase during the period of kinetic process. 

One further step in the selection of a suitable C-S-H model was to compare the mole amount of 

Ca2+ in solution after the system has reached equilibrium. Among the experiments conducted, at flow 

rate 2 mL.min-1 equilibrium was reached after a reasonable period of time (~ 1 day). Comparison 

between the experimentally measured equilibrium Ca2+ mole amount and that predicted using different 

C-S-H models revealed that Kersten’s model reproduces the experimental data better than the other two 

models. However, some adjustment in the value of pKsp (0.77 pK units) rendered the C-S-H model 

completely consistent with the experimental data. The preceding adjustment is justified in the light of 

the relatively large scatter in experimental C-S-H solubility data used to fit solid solution models.38 

Therefore, a value of Ksp
Kersten,adjusted = 6.0313 × 10−8 was used in all the simulations. 

An equilibrium speciation solver to be coupled into a kinetic simulation code must be accurate and 

efficient.39 In order to avoid computationally expensive communication with external speciation solvers 

we chose to develop our own equilibrium solver based on the algorithm proposed by Anderson and 

Crerar adapted to our needs (c.f., Zhu et al.35 for an example of interfacing OLI Studio with population 
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balance modeling).40,41 The Truesdell-Jones (TJ) activity coefficient parameters and also mass action 

equations (with their corresponding equilibrium constant) provided to the speciation solver are 

summarized in Table S1 and Table S2. Throughout this work, equilibrium calculations considering the 

formation of solid C-S-H are denoted as EQBRM while those merely considering aqueous reactions 

(local equilibrium in aqueous solution) are denoted as aqEQBRM. 

Table S1. Aqueous species considered here along with their TJ activity coefficient parameters (taken from 

PHREEQC database42 whenever available or estimated by fitting TJ model to activity data calculated by OLI 

Studio11 over an ionic strength < 1 mol.kg-1). 

Species name 
Truesdell-Jones Parameters 

ai bi 

H2O 0 0 

Ca2+ 4.86 0.15 

H3SiO4
- 4.5 0.06 

Na+ 4.32 0.06 

NO3
- 3.58 0 

OH- 10.65 0.21 

H+ 4.78 0.24 

NaNO3 0 0.08 

CaNO3
+ 3.93 0.06 

H4SiO4 0 0.05 

H2SiO4
2- 3.74 0 

CaOH+ 3.95 0.06 

CaHSiO3
+ 3.22 0.01 

CaH2SiO4 0 0.05 

NaHSiO3 0 0.05 
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Table S2. Mass action equations for model C-S-H precipitation system and their equilibrium constants at T = 298.15 

K (from OLI Studio database).11 

Index Law of mass action log10(Ki) 

1 H+ + OH− ⇄ H2O 13.99340 

2 H3SiO4
− + H+ ⇄ H4SiO4 9.84214 

3 H2SiO4
2− + H+ ⇄ H3SiO4

− 13.10291 

4 Na+ +  H3SiO4
− ⇄ NaHSiO3 + H2O 2.08340 

5 NaNO3 ⇄ Na+ + NO3
− 0.91046 

6 CaOH+ ⇄ Ca2+ + OH− -1.23140 

7 CaNO3
+ ⇄ Ca2+ + NO3

− -0.41911 

8 Ca2+ + H3SiO4
− ⇄ CaHSiO3

+ + H2O 1.25827 

9 CaH2SiO4 + H+ ⇄ Ca2+ + H3SiO4
− 8.35399 

S4. Crystallite/particle size and parameters for secondary nucleation 

In the absence of preformed solid particles, nucleation would be the first step in the precipitation 

of a solid phase from a liquid solution. Broadly speaking, nucleation is classified as either primary or 

secondary nucleation. In contrast to primary nucleation, secondary nucleation takes place merely in the 

presence of already formed precipitant particles (either formed earlier during the same precipitation 

process or added to the reaction medium, for instance as seeds). Primary nucleation could be either 

homogeneous or heterogeneous which, respectively, proceed in the absence or presence of foreign 

surfaces. The theoretical frameworks for the two primary nucleation mechanisms are similar, differing 

mainly in the magnitude of interfacial tension used in their mathematical description.43 Regarding 

secondary nucleation in the presence of solid precipitate, it is important to distinguish between apparent, 

contact and true (catalytic) mechanisms.29,44 Apparent mechanisms refer to those taking place when 

nuclei are introduced into the system along with seeding crystals. On the other hand, contact 
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mechanisms, which give rise to nuclei as a result of mechanical contact between crystals and crystallizer 

components or crystals themselves, generally occur for particles larger than 0.2-0.5 μm. Finally, true 

(catalytic) secondary nucleation is a prevalent process in the formation of 

polycrystalline/mesocrystalline particles, once we have precipitated particles in solution.45-49 Indeed, 

catalytic secondary nucleation allows for the formation of nuclei at lower supersaturation ratios due to 

the favorable interaction between existing embryos and already precipitated particles.43,44,46,50-52 This 

lower energy demand due to nucleation in the close vicinity of already formed substrate can be 

accounted for as follows. 

If we assume that C-S-H crystallites are cuboids of arbitrary aspect ratio (Fig. 2 (c) in the main 

text) their surface area and volume would be 

Ac ≡ kALc2 = 2ar(ar + 2)Lc2 (S17) 

Vc ≡ kVLc3 = ar2Lc3 (S18) 

Therefore, we will have surface area and volume shape factors kA = 2ar(ar + 2) and kV = ar2, 

respectively, which are dependent on the ratio of crystallite edge length to its thickness (Fig. 2 (c)). 

When a cuboidal secondary nuclei forms in the close vicinity of the peripheral area of a substrate, one 

out of its four side faces interacts with the substrate surface while the rest of them are in contact with 

bulk solution (look at Fig. 1 and Fig. 2 (b) in the main text). The former face experiences stabilization 

due to attractive interaction with the substrate. If we take σ (J.m-2) to be the adhesion/cohesion energy 

between these two surfaces per unit, then the work required in order to form a new surface as a 

secondary nucleus (the interfacial term in classical nucleation theory) would be 

2ar(ar + 2)Lc2 × γeff ≡ (3ar + 2ar2)Lc2 × γ + arLc2 × (γ − σ) (S19) 

After some algebraic manipulation and simplification we arrive at equation 7 in the main text, 

which reduces to the equation derived for cubes by Testino et al. in case of ar = 1.46 

Now let us estimate the fraction of overall surface area that is available for secondary nucleation. 

To account for the foil-like morphology of C-S-H particles,1 we assume that secondary nucleation 
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occurs only laterally on the peripheral area of already formed C-S-H particles. Therefore, at each instant 

of time, out of the overall crystallite surface area, which is proportional to the second moment (Section 

S2), only the side particle surfaces are available for secondary nucleation. PBEM tracks Lc as a function 

of time and average particle edge length (Lp) is estimated at each time step knowing the overall volume 

of solid precipitated out of solution. In this respect, the average crystallite thickness (L�c) shall be defined 

as3 

L�c(t) = �
m3(t)
m0(t)

3
  (S20) 

Alternatively, the total number of crystallites at time t (nc(t)) reads 

nc(t) = m0(t) × V(t) =  � (JI(τ) + JII(τ))V(τ)dτ
τ=t

τ=0
 (S21) 

Thus, equation 20 can also be written as 

L�c(t) = �
m3(t) × V(t)

nc(t)
3

  (S22) 

In order to form particles, individual primary nuclei are needed around which secondary nuclei 

can be generated. For that reason, each particle is made up of a single primary nucleation-generated 

nucleus and possibly several secondary nucleation-generated nuclei. Bearing that in mind, the total 

number of particles at time t (np(t)) is 

np(t) = � JI(τ) × V(τ)dτ
τ=t

τ=0
 (S23) 

Now, the overall precipitate volume (VCSH(t)) can be estimated from the third moment (or 

equivalently from the nc and L�c) 

VCSH(t) = kVm3(t) × V(t) = nc(t) × kV(L�c(t))3 (S24) 

As we assumed a lateral or edge secondary nucleation, which necessitates particles of thickness 

L�c, the volume equivalent mean edge length of particles would be (Fig. 2 (b)) 
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L�p(t) = L�c(t) × �
kVnc(t)

np(t)  (S25) 

From Fig. 1 and Fig. 2 (b) it is clear that only the external side faces of particles are available for 

secondary nucleation. Hence, the fraction of overall precipitate surface area available for secondary 

nucleation would be 

xA(t) =
4L�c(t) × L�p(t) × np(t)

kAm2(t) × V(t)
 (S26) 

S5. Coupled thermodynamic-kinetic modeling framework 

The set of moment-transformed PBE (equation (1) in the main text) has to be solved 

simultaneously with mass balance equations. These mass balance equations track the time evolution of 

elemental abundances in aqueous solution that is passed at every times-step into the speciation solver. 

For the current C-S-H precipitation system, there are four elemental balance equations that have to be 

considered (O, Ca, Si, and Na; the overall amount of nitrogen in solution is constant as no N-containing 

compound is being introduced into the aqueous solution nor leaving it (Fig. S1): 

d
dt

nO,Sol = Q1CO − νO
dnC−S−H

dt
 (S27) 

d
dt

nCa,Sol = −νCa
dnC−S−H

dt
 

(S28) 

d
dt

nSi,Sol = Q1CSi − νSi
dnC−S−H

dt
 

(S29) 

d
dt

nNa,Sol = Q1CNa 
(S30) 

where nX,Sol denotes the molar amount of element X in solution having a molar concentration CX 

(mol.m-3) in the inlet stream of flow rate Q1(m3), and contributing νX moles in one mole C-S-H 

precipitated from solution. Additionally, 
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dnC−S−H
dt

= kVρsolidV(t)

× �3�wi(t)G�Li(t)� 
N

i=1

(Li(t))2 + (LI)3 × JI(t) + (LII)3 × JII(t)� 

(S31) 

is the overall rate of C-S-H precipitation due to nucleation (second and third terms) and growth 

(first term) events (mol.s-1). This equation is nothing but the ODE for the third moment (equation 1 in 

the main text with k = 3) multiplied by some factors to convert it into the rate of C-S-H precipitation in 

mol.s-1. As per system specifications, CO, CSi, and CNa are 55.48, 0.009, and 0.1172 mol.L-1, 

respectively (Fig. S1). Also, according to Kersten’s C-S-H model, νO, νCa, νSi are 7/2, 1, and 1/2, 

respectively. 

S6. Regression of the computational model to experimental data 

Having no unknown model parameters, solution of the PBE set (equation (1) in the main text), 

written for three quadrature nodes, coupled to mass balance equations give temporal evolution of 

different elements in solution as well as solid C-S-H formed. Additionally, at each time step of 

integrating the ODE set the speciation solver calculates the full speciation of aqueous solution. 

Nevertheless, the former is rarely the case and we oftentimes have at least a few unknown model 

parameters that have to be estimated by fitting the computational model into some experimental dataset. 

In this work, we have five unknown parameters to be optimized: γ, σ, kr, g, ar. The objective function to 

be minimized is defined as 

Fobjective = 106 × ��nCa,experiment − nCa,simulated�
2
 (S32) 

where nCa,experiment and nCa,simulated are the experimental and corresponding simulated Ca2+(aq) 

mole amounts, respectively, and 106 is a scaling factor to bring the objective function to an order of 

magnitude of one.53 A bounded Nelder-Mead simplex direct search code, which uses MATLAB’s 
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fminsearch function as the engine, was employed to minimize the objective function.54 All the codes, 

included in Supplementary Information, were implemented in MATLAB® 2015b. 

The time-dependent experimental data (Ca2+(aq) mole amount as a function of time) already 

collected on the precipitation of C-S-H will be used in order to examine the kinetics of this model 

system. The overall regression algorithm is summarized schematically in Fig. 3 in the main text. As can 

be seen the first step would be to introduce the experimental data into the model along with initial 

conditions for all the ordinary differential equations (ODEs). Furthermore, appropriate initial guesses 

should be provided for unknown model parameters. Having the initial amounts of various elements 

(e.g., Ca and Si), an initial speciation calculation shall be done to determine the concentrations of 

various aqueous species in the solution assuming equilibrium is attained quickly in the liquid phase 

while the subsequent precipitation process would be the rate limiting step (local-equilibrium 

assumption).32-35 Knowing the aqueous speciation one may calculate the driving force for the formation 

of new solid phase, the supersaturation ratio, by comparing the ion activity product (IAP) of relevant 

species with their corresponding equilibrium value (Ksp).27 Having the supersaturation ratio, kinetic 

equations describing different particle formation processes (e.g., nucleation and growth) can be used to 

calculate various terms in the PBE set which is marched over time along with mass balances and 

changes in the system volume. After each time step in the integration of the ODE set, speciation should 

be calculated using the updated amounts of elements. Further, recently calculated moments are 

introduced into the Wheeler algorithm to calculate the corresponding quadrature nodes and weights 

necessary for some integral terms in PBE set. The former along with the updated supersaturation ratio 

are used to advance the ODE set one more time step. This (internal) loop is iterated over until we reach 

the end of simulation period (literally the period for which experimental data is regressed). At this step, 

an external loop (optimization scheme) constructs an objective function using the summed squared 

differences between the experimental data and equivalent simulated values. The unknown model 

parameters are adjusted in response to objective function values larger than a pre-defined tolerance and 
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passed to the internal loop for a new coupled thermodynamic-kinetic simulation. Iteration over the 

external loop will finally give the optimal model parameters describing the experimental data most 

accurately. 

In this work, all the simulations were run on an ordinary HP laptop with dual-core Intel® Core™ 

i5-4310M CPU @ 2.70 GHz 2.70 GHz processor and 8.00 GB of RAM. A typical run time of ~ 150 

seconds was required for a 24 hour precipitation simulation with known model parameters. To keep the 

optimization runs in a feasible range (a few hours), however, only the experimental data down to 99.0 % 

conversion were used for the model regressions. This corresponds to 670 and 330 minutes for Q = 0.5 

and 2.0 mL.min-1 datasets, respectively (Fig. 4 in the main text). For the sake of completeness, the 

experimental data collected over 24 h along with corresponding simulation results are presented as 

insets. 

S7. Some supplementary outputs of PBEM 

From the results of PBE simulation it is possible to estimate the average supersaturation ratio at 

which each of the constituting events occurs: 

SJI��� =
∫ S × V(τ)JI(τ)�LI(τ)�

3
dττ=t

τ=0

∫ V(τ)JI(τ)�LI(τ)�
3

dττ=t
τ=0

 (S33) 

SJII���� =
∫ S × V(τ)JII(τ)�LII(τ)�

3
dττ=t

τ=0

∫ V(τ)JII(τ)�LII(τ)�
3

dττ=t
τ=0

 
(S34) 

SG��� =
∫ S × V(τ) × [dm3

dτ − JI(τ)�LI(τ)�
3
− JII(τ)�LII(τ)�

3
]dττ=t

τ=0

∫ V(τ) × [dm3
dτ − JI(τ)�LI(τ)�

3
− JII(τ)�LII(τ)�

3
]dττ=t

τ=0

 
(S35) 

where SJI���, SJII����, and SG��� denote volume-averaged supersaturation ratios for primary nucleation, 

secondary nucleation, and growth, respectively. Table S3 compiles the activation free energies for the 

nucleation events along with the range of their critical nuclei size, and also the average supersaturation 

ratios over which each of the nucleation and growth events takes place. 
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Another quantity that can be estimated from PBE simulations is the contribution of individual 

events to the overall precipitation process: 

nCSH
JI = 100 ×

∫ V(τ)JI(τ)�LI(τ)�
3

dττ=t
τ=0

∫ V(τ)m3(τ)dττ=t
τ=0

 (S36) 

nCSH
JII = 100 ×

∫ V(τ)JII(τ)�LII(τ)�
3

dττ=t
τ=0

∫ V(τ)m3(τ)dττ=t
τ=0

 
(S37) 

nCSHG = 100 − (nCSH
JI + nCSH

JII ) (S38) 

with nCSH
JI , nCSH

JII , and nCSHG  representing cumulative amounts of C-S-H precipitated (in percentage 

of the overall solid formed) as a result of primary nucleation, secondary nucleation, and growth, 

respectively. 

Table S3. Critical size of nuclei along with activation free energies and average supersaturation ratios of various 

events estimated from PBEM. 

Q 

(mL.min-1) 

LI 

(nm)1 

LII 

(nm)1 
ΔGmax,I (kJ.mol-1)a ΔGmax,II (kJ.mol-1)a SJI��� SJII���� SG��� 

0.5 
2.1-2.7 

(2.1) 

1.7-2.7 

(1.8) 
121-204 (122) 69-175 (72) 5.0 4.9 3.1 

2.0 
2.0-2.7 

(2.0) 

1.7-2.7 

(1.7) 
118-205 (120) 68-176 (71) 5.9 5.7 4.0 

a Complete ranges (down to nucleation rates 1 nuclues.m-3.s-1) with those calculated at corresponding average 

supersaturation ratios in parentheses (e.g., LI = 2.1 nm at SJI��� = 5.0); note that the extreme values of ΔGmax,I and ΔGmax,II 

correspond to vanishingly small nucleation rates and thus, virtually no primary and secondary nucleation happens with 

barriers beyond ~ 170 and ~ 140 kJ.mol-1, respectively. 



S19 
 

S8. Mechanistic growth rate equations 

There are a number of steps involved in the growth of solid particles the first being the diffusion 

of building units from the solution bulk to the surface of particles. A solid particle grows fastest when 

its faces are completely covered with kink sites. Under the above conditions, the particle growth is only 

limited by the diffusion of building blocks toward the particle surface. Therefore, diffusion-controlled 

growth theoretically dictates the highest growth rate a particle can achieve at a particular 

supersaturation.43,55 The mathematical expression for the maximum linear growth rate would then be 

GDiffusion =
2kAD

3kVρsolidL
ceq(S − 1) (S39) 

where L is the size of crystal, ρsolid is the molar density of the precipitated solid, ceq = Ksp
1/ν is the 

solubility of crystal (mol.m-3 solution), S is the supersaturation ratio, and D is the apparent diffusion of 

dissolved building units. This equation is simply Fick’s first law for dilute solutions, correlating 

diffusive flux with concentration gradient, the latter approximated by relative supersaturation ratio (S-

1).29 

Crystal growth might be controlled by the integration of building units (monomers) onto the 

surface of particles if this step is much slower than the bulk diffusion process discussed earlier. 

Depending on the mechanism governing the attachment of building units to the surface of crystals, we 

typically encounter two types of integration-controlled growth equations. In this regard, integration 

could be controlled by screw dislocations present on the surface (BCF theory and its variations),56 or it 

may be dominated by the role of two-dimensional surface nuclei. Even in a single system, however, 

under different conditions (e.g., supersaturation rise or depletion) there might be a transition from one 

mechanism to another with unknown borderline. To overcome this complication, a viable approach 

would be to define a growth rate analogous to that employed in diffusion-reaction theory (i.e., power 

law).43,55,57 The disadvantage of this approach, which is implemented in the PBE simulations performed 

here, is its semi-empirical nature. 
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Nielsen adapted the BCF theory to the growth of sparingly soluble electrolytes where the 

integration of cations into the kink sites from an electroneutral adsorption layer in equilibrium with 

solution is the rate-limiting step.58,59 Thus, 

GBCF = kr,BCF
(S − 1)√S × νln (S)

1 + 1
√3S

 (S40) 

where the growth rate constant reads 

kr,BCF =
νiKadceqkBTv0NA

4πLmγGexp (γGLm2
kBT )

 (S41) 

with the mole fraction-based rate constant (frequency) for the integration of building units (νi; s-1) 

being related to the activation free energy (ΔGi
#) of incorporation by means of the Eyring equation 

νi =
kBT

h
exp (−

ΔGi
#

kBT
) (S42) 

In the equations above, Kad is the adsorption equilibrium constant (30 for 2-1 and 1-2 electrolytes; 

200 for 2-2 electrolytes),59 γG ≡ min(γeff) = γ(ar+1
ar+2

) is the effective interfacial tension for epitaxially 

incorporated monomers onto a substrate (i.e., attachment of building units to the substrate with perfect 

lattice match),46,51 v0 is the molecular volume of water solvent (3.00×10-29 m3/molecule H2O), Lm is the 

size of building units (m), and h is the Planck’s constant. 

The other integration-controlled regime takes place when the formation of two-dimensional nuclei 

on the surface governs the growth of crystals. Depending on the assumptions made, particularly the 

relative rate of nuclei formation to their spreading, several equations have been derived in the literature. 

In this respect, if surface nuclei grow to form a complete new layer prior to the occurrence of the next 

nucleation event (the so-called mononuclear (MN) regime), the rate of crystal growth would be29 

GMN = kr,MNL2exp (−
ΔGmax,s

kBT
) (S43) 

where the activation free energy against two-dimensional surface nucleation is 
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ΔGmax,s =
β′Ω4/3γG2

kBT × νln (S)
 (S44) 

with β′ = βL
2

4βA
 in which βL and βA are perimeter and area shape factors, respectively (e.g., βL = 4 

and βA = 1 for a square surface nucleus). For a rectangular surface nucleus of arbitrary aspect ratio ar,2D 

β′ =
�ar,2D + 1�

2

ar,2D
 (S45) 

On the other extreme, in polynuclear regime the spreading rate of surface nuclei is much smaller 

than their formation rate. In this case,29,59 

GPN = kr,ExpS7/6(S − 1)2/3(νlnS)1/6exp (−
ΔGmax,s

3kBT
) (S46) 

Between these two extreme scenarios is the birth and spread (B&S) model where nuclei may be 

born on incomplete layers and spread at a constant rate, independent from each other.43 In this case, the 

final growth rate expression reads60 

GB&S = kr,Exp(S − 1)2/3(νlnS)1/6exp (−
ΔGmax,s

3kBT
) (S47) 

In the last two surface nucleation growth models the pre-exponential factor kr,Exp can be 

estimated as59 

kr,Exp = 2Lmνin �
Kadceq
ρMolar

�
4/3

exp (−
γGLm2

kBT
) (S48) 

Over a limited range of supersaturation, the abovementioned growth rate expressions may be 

approximated by a power law form.29 Therefore, the kinetic order of growth for mononuclear 

mechanism would be 

gMN =
β′Ω

4
3γG2(S − 1)

(kBT)2 × S × ν ln2 (S)
 (S49) 

For polynuclear regime we have 

gPN =
S − 1

S
[
7
6

+
2S

3(S − 1) +
1

6 ln(S) +
β′Ω

4
3γG2

3(kBT)2 × ν ln2 (S)
] 

(S50) 
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and for B&S regime 

gB&S =
S − 1

S
[

2S
3(S − 1) +

1
6 ln(S) +

β′Ω
4
3γG2

3(kBT)2 × ν ln2 (S)
] (S51) 

Inserting β′ = π (circular surface nuclei) and γG (31.84 and 33.48 mJ.m-2 for 0.5 and 2 mL.min-1, 

respectively) g values corresponding to various surface nucleation mechanisms can be obtained (Table 

S4) when S varies between its minimum and maximum value (1.022-5.06 and 1.017-5.97 for 0.5 and 2 

mL.min-1, respectively). It should be mentioned that the value of g ranges between 1 and 2 for BCF 

regime.29 

The value of exponent g roughly points toward the dominant integration mechanism at work. A 

value g = 1 indicates the dominance of rough surface growth (or dislocation-controlled growth at very 

high supersaturations) while g = 2 usually represents dislocation-controlled growth at relatively low 

supersaturations (parabolic law). Values g > 2, denoting stronger supersaturation dependence of growth 

rate, can arise under the dominance of surface nucleation mechanisms (mononuclear, polynuclear, or 

birth and spread growth mechanisms). Looking at Table S4 it is evident that PN mechanism cannot be 

responsible for the growth of C-S-H crystallites. Nevertheless, even though the fitted g values are closer 

to those corresponding BCF mechanism, MN and B&S mechanisms cannot be ruled out by this 

approach. Indeed, there might be parallel growth regimes at work during the precipitation process. 

Table S5 summarizes the results of fitting power law growth rate output of PBE simulations by 

individual growth expressions (look at Fig. S3 for graphical representation). Also, Table 2 in the main 

text reports the results of regression with a compound B&S+BCF expression (look at Fig. 5 (c) in the 

main text, Fig. S7 (c), and Fig. S4 for the plots). 

 

Table S4. Estimated kinetic order of growth corresponding to different surface nucleation models. 

Q (mL.min-1) Kinetic order of growth (g) 
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MN 

(Söhnel and Garside, 1992) 

PN 

(Nielsen, 1984) 

B&S 

(O'Hara and Reid, 1973) 

0.5 1.02-151.6 2.0-51.4 1.1-51.4 

2.0 0.96-216.9 2.1-73.2 1.1-73.1 

Table S5. Results of fitting power law growth rate with individual surface integration-controlled models. 

Q (mL.min-1) Fit results 

Growth rate equation 

PN 

(Nielsen, 1984) 

B&S 

(O'Hara and Reid, 1973) 
BCF (Nielsen, 1981) 

0.5 

kr 4.14×10-14 5.12×10-13 1.80×10-14 

β' 3.14 6.38 - 

Adjusted R2 0.9945 0.9980 0.9970 

RMSE (m.s-1) 9.19×10-15 5.60×10-15 6.75×10-15 

2.0 

1st parameter 3.73×10-14 5.41×10-13 1.53×10-14 

2nd parameter 3.14 6.28 - 

Adjusted R2 0.9972 0.9977 0.9988 

RMSE (m.s-1) 7.01×10-15 6.43×10-15 4.53×10-15 

 

Fig. S5 shows the PBEM with a mononuclear growth expression fitted to experimental data (note 

that as mononuclear growth rate is size-dependent it shall not be fitted to the growth rate values of PBE 

simulations with size-independent power law expression). As it is obvious the regression is much 

inferior compared to that using a size-independent power law expression. This observation rules out the 

possibility of a mononuclear growth regime dominating the growth of C-S-H crystallites. 
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Fig. S3. Individual surface-controlled growth mechanisms fitted to power law data from PBEM for 0.5 (a) and 2.0 

mL.min-1 (b). 

 

Fig. S4. Decomposition of compound B&S+BCF growth expression to its constituting parts along with the critical 

diameter of two-dimensional surface nuclei as a function of time for 0.5 (a) and 2.0 mL.min-1 (b). 
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Fig. S5. PBE model with mononuclear growth expression fitted to experimental data at Q = 0.5 (a) and 2 mL.min-1 

(b). 

S9. Additional supplementary Fig.s 

 

Fig. S6. Experimental (empty triangles) force data vs. separation for a flat C-S-H surface interacting with a C-S-H 

nanocrystal mounted on an AFM tip immersed in Ca(OH)2 solution with pH = 12.5 along with corresponding cubic 

spline interpolation (broken line) (reproduced from Fig. 7 in Ref. 61); the shaded area represents the integral work (= 

attractive energy) required to overcome the attraction between the two interacting bodies and pull them apart to a 

separation where there is a null force between them. 
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Fig. S7. Temporal PBE simulation outputs at Q = 2.0 mL.min-1: (a) the rate of primary and secondary nucleation and 

the corresponding size of critical nuclei; (b) activation free energies against nucleation events; (c) C-S-H growth rate 

(power law) and its regression with different interface-controlled growth equations; (d) supersaturation ratio with 

respect to C-S-H and portlandite; (e) average C-S-H crystallite/particle thickness and its particle edge length; (f) 

cumulative contribution of various events to the overall amount of C-S-H precipitated. 



S27 
 

 

Fig. S8. Temporal PBE simulation outputs at Q = 0.08 mL.min-1: (a) the rate of primary and secondary nucleation 

and the corresponding size of critical nuclei; (b) activation free energies against nucleation events; (c) C-S-H growth 

rate (power law); (d) supersaturation ratio with respect to C-S-H and portlandite; (e) average C-S-H 

crystallite/particle thickness and its particle edge length; (f) cumulative contribution of various events to the overall 

amount of C-S-H precipitated. 
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Fig. S9. Temporal kinetic speciation of C-S-H precipitation system (Q = 2 mL.min-1): pH in the 

reaction medium (a), and the amount of solid C-S-H precipitating out of solution (b), along with the 

corresponding values predicted by equilibrium calculations including (EQBRM) and excluding 

(aqEQBRM) solid-liquid equilibrium; complete speciation of Ca- (c), and Si- (d) containing species 

present in aqueous solution (the dotted vertical line indicates the time at which the addition of Si 

solution stops). 
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