Supporting Information

Enhancing Moisture-tolerance and Photovoltaic Performances for FAPbl₃ by Bismuth Incorporation

Yanqiang Hu, a Ting Qiu, a Fan Bai, a Xiaoliang Miao, Shufang Zhang*a

This file includes Figure S1-S12 and Table S1-S3:

Figure S1. XRD patterns showing a peak shift between the controlled α -FAPbI₃ and the FAPb_{0.95}Bi_{0.05}I₃ film.

Figure S2. Photograph showing the phase transitions of (a) the controlled FAPbI₃ and (b) the FAPb_{0.95}Bi_{0.05}I₃ films after heating for 10 min at different temperatures. XRD patterns of (c) FAPbI₃ and (d) FAPb_{0.95}Bi_{0.05}I₃ films heated at different temperatures for 10 min. δ and α indicate representative peaks for δ -FAPbI₃ and α -FAPbI₃, respectively.

Figure S3. EDS results of the controlled α -FAPbl₃ and the Bi-incorporated FAPb_{1-x}Bi_xI₃ films. (a) α -FAPbI₃, (b) FAPb_{0.95}Bi_{0.05}I₃, (c) FAPb_{0.95}Bi_{0.1}I₃, (d) FAPb_{0.8}Bi_{0.2}I₃, (e) FAPb_{0.75}Bi_{0.25}I₃, (f) FAPb_{0.5}Bi_{0.5}I₃.

Figure S4. PL spectra of the controlled α -FAPbI₃ and the FAPb_{1-x}Bi_xI₃ perovskite films.

Figure S5. XRD patterns of perovskite films freshly coated and exposed in air for 5 day, 10 day, and 15 day, respectively. (a) The controlled α -FAPbI₃ and (b) the FAPb_{0.95}Bi_{0.05}I₃ film, respectively.

Figure S6. Top-view SEM images of (a) α -FAPbl₃, (b) FAPb_{0.95}Bi_{0.05}I₃, (c) FAPb_{0.9}Bi_{0.1}I₃, (d) FAPb_{0.8}Bi_{0.2}I₃, (e) FAPb_{0.75}Bi_{0.25}I₃, (f) FAPb_{0.5}Bi_{0.5}I₃ capping layers on compact TiO₂ (c-TiO₂) layer-coated FTO glass. Scale bar: 500 nm.

Figure S7. Overview XPS spectra of the controlled α -FAPbI₃ and Bi-incorporated FAPb_{1-x}Bi_xI₃ films.

Figure S8. Nyquist plots of the controlled α -FAPbl₃ and FAPb_{1-x}Bi_xl₃ perovskite films under different conditions (the measured results was shown as dots while the fitted results shown as solid lines). (a) Dark and (b) AM 1.5G illumination. The insets in (a) and (b) is equivalent circuit model, respectively.

Figure S9. (a) Photographs of solar cells based on the controlled α -FAPbl₃ and Bi-incorporated FAPb_{1-x}Bi_xI₃ perovskite films. (b) Representative *J-V* curves of solar cells based on the controlled α -FAPbI₃ and Bi-incorporated FAPb_{1-x}Bi_xI₃.

Figure S10. (a) Photograph and corresponding cross-sectional SEM image of based on the controlled α -FAPbI₃ solar cells. (b) Photocurrent density and power conversion efficiency as functions of time of the champion solar cell based on the controlled α -FAPbI₃ film at the bias of 0.72 V.

Figure S11. Photovoltaic parameter statistics of the solar cells based on the controlled α -FAPbl₃ and Bi-incorporated FAPb_{1-x}Bi_xI₃ perovskites.

Figure S12. (a) Photographs of solar cell based on the controlled α -FAPbl₃ film while exposed in air for 0h, 500h, and 1000 h. (b) Normalized *Jsc, Voc, FF*, and PCE for pure α -FAPbl₃ and FAPb_{0.95}Bi_{0.05}l₃ planar-architecture perovskite solar cells without encapsulation.

Sample Element	X=0	X=0.05	X=0.1	X=0.2	X=0.25	X=0.5
С	14.287%	14.265%	14.301%	14.279%	14.312%	14.290%
Ν	28.653%	28.597%	28.600%	28.634%	28.593%	28.573%
Pb	14.301%	13.569%	12.862%	11.427%	10.703%	7.210%
Ι	42.759%	42.849%	42.806%	42.799%	42.817%	42.759%
Bi	0	0.720%	1.431%	2.861%	3.575%	7.168%

Table S1. The corresponding atomic percentages of the controlled α -FAPbI₃ and FAPb_{1-x}Bi_xI₃ films got from XPS spectra.

Table S2. The extracted equivalent circuit element parameters of series of devices based on pure α -FAPbI₃ and FAPb_{1-x}Bi_xI₃ films under different conditions.

Condition	R	X=0	X=0.05	X=0.1	X=0.2	X=0.25	X=0.5
Dark	Rsh (KΩ)	1.40	1.29	1.27	1.54	1.44	1.01
	Rct (KΩ)	8.20	7.12	7.55	9.61	11.32	13.67
Light	Rsh (KΩ)	1.08	1.22	1.33	1.33	1.49	1.32
	Rct (KΩ)	5.42	3.17	4.86	6.28	7.50	9.11
$\frac{\Delta \operatorname{Rct}}{[(\operatorname{R}_{\operatorname{dark}}-\operatorname{R}_{\operatorname{light}})/\operatorname{R}_{\operatorname{dark}}]}$		33.90%	55.48%	35.63%	34.65%	33.75%	33.36%

Perovskite	Voc	Jsc	FF	PCE
	[V]	[mA/cm ²]		[%]
α -FAPbI ₃	1.01	20.50	62.86	13.02
FAPb _{0.95} Bi _{0.025} I ₃	1.05	22.38	67.62	15.89
FAPb _{0.95} Bi _{0.05} I ₃	1.03	23.65	72.99	17.78
FAPb _{0.95} Bi _{0.075} I ₃	1.02	22.81	70.79	16.47
FAPb _{0.9} Bi _{0.1} I ₃	1.00	21.60	64.72	13.98
FAPb _{0.8} Bi _{0.2} I ₃	0.93	18.87	60.80	10.67
FAPb _{0.75} Bi _{0.25} I ₃	0.89	15.30	55.69	7.58
FAPb _{0.5} Bi _{0.5} I ₃	0.82	7.65	41.50	2.60

 $\textbf{Table S3.} Photovoltaic parameters of solar cell devices based on the controlled α-FAPbI_3 and $FAPb_{1-x}Bi_xI_3$ perovskites.$