Supporting Information

Catechol derivatives as dopants in PEDOT:PSS to improve the

performance of *p-i-n* perovskite solar cells

Peng Huang^a, Yanfeng Liu^a, Kaicheng Zhang^a, Ligang Yuan^a, Dahua Li^a, Guangliang Hou^a, Bin Dong^a, Yi Zhou^a*, Bo Song^a*, and Yongfang Li^{ab}

 a. Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
 *E-mail: yizhou@suda.edu.cn; songbo@suda.edu.cn

b. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of

Sciences, Beijing, 100190, China.

Dopant	PCE with neat film (%) F	CE with doped film (%)	Reference
polyethylene oxide	11.41	16.52	1
glycerol	8.57	11.41	2
imidazole	12.70	15.70	3
PSS-Na	12.35	15.56	4
DMSO + Zonyl	-	12-12.5	5
graphene oxide + glucose	9.4	12.8	6
MoO _x	13.90	15.79	7
TiO ₂ -MoO ₃ core-shell NPs	8.98	13.63	8
Ag NPs	11.33	12.68 ± 0.86	9
isopropanol	-	13.01	10
F4-TCNQ	13.30	17.22	11
ammonia	14.40	15.5	12
DMSO	11.8	16.70	13
dopamine (HCl)	15.2	16.65	14
TS-CuPC	13.29	17.29	15

Table S1. PEDOT: PSS doped with different materials as HTLs and corresponding photovoltaic parameters.

Fig. S1 *J-V* curves of Pero-SCs depend on the concentration of catechol derivatives in the aqueous solution of PEDOT:PSS.

Table S2. Optimization of dopant content in PEDOT:PSS solutions. Photovoltaic characteristics extrapolated from *J-V* curves of the Pero-SCs depend on the concentration of catechol derivatives in the aqueous solution of PEDOT:PSS.

Dopant in	Concentration (mg mL ⁻		/ (m / cm ⁻²)	FF (0/)		
HTL	¹)	$V_{\rm oc}$ (V) $J_{\rm sc}$ (r		FF (%)	PCE (%)	
DOPA	3	1.00	19.56	72.22	14.12	
	6	1.02	20.43	71.14	14.85	
	10	1.02	20.18	66.53	13.71	
	2	0.98	18.27	64.75	11.58	
NE	6	0.97	20.58	71.98	14.40	
	10	0.99	21.06	61.64	12.88	
	6	1.04	20.69	77.56	16.73	
DOBD	9	1.04	21.45	78.57	17.46	
	12	1.03	21.28	76.72	16.85	

Fig. S2 EQE spectra of Pero-SCs with PEDOT:PSS, DOPA-, NE- and DOBD-PEDOT:PSS as HTL.

Fig. S3 Hysteresis assessment of the influence of catechol derivatives on the performance of the Pero-SCs. The measurement was conducted under the illumination of AM 1.5G, 100 mW cm⁻² at both forward and reverse scans with a rate of 20 V s⁻¹.

Table S3. Photovoltaic characteristics of the Pero-SCs obtained with forward and reverse scans.

Dopant in HTL-scan direction	V _{oc} (V)	J _{sc} (mA cm⁻²)	FF (%)	PCE (%)
DOBA Forward	1.02	20.42	71 1	14.95
DOPA-FOI walu	1.02	20.45	/1.1	14.65
DOPA-Reverse	1.02	20.02	69.5	14.25
NE-Forward	0.97	20.58	72.0	14.40
NE-Reverse	0.97	20.01	70.4	13.72
DOBD-Forward	1.04	21.45	78.6	17.46
DOBD-Reverse	1.04	21.40	77.6	17.28

Table S4 The percentage of PEDOT and PSS and the ratio of PEDOT / PSS in different films surface.

	W/O	DOP	NE	DOBD	
DEDOT	42.2	45.0	447	44.0	
PEDOT	12.3	15.8	14.7	14.9	
PSS	87.7	84.2	85.3	85.1	
PEDOT /	0 1/	0 19	0 17	0 18	
PSS	0.14	0.15	0.17	0.10	

Fig. S4 FTIR spectra of neat PEDOT:PSS and DOPA-, NE- and DOBD-PEDOT:PSS films.

Fig. S5 Typical *J-V* curves of Pero-SCss with neat PEDOT:PSS and DOPA-, NE- and DOBD-PEDOT:PSS as HTLs measured in the dark.

Fig. S6 Stability assessment of the Pero-SCs with neat PEDOT:PSS and DOPA-, NE- and DOBD-PEDOT:PSS as HTLs. Normalized photovoltaic parameters depend on the storage time in the glovebox filled with nitrogen: (a) V_{oc} , (b) J_{sc} , (c) FF, and (d) PCE.

References:

- 1 X. Huang, K. Wang, C. Yi, T. Meng and X. Gong, *Adv. Energy Mater.*, 2016, **6**, 1501773.
- J.-F. Li, C. Zhao, H. Zhang, J.-F. Tong, P. Zhang, C.-Y. Yang, Y.-J. Xia and D.-W. Fan, *Chinese Phys. B*, 2016, 25, 28402.
- 3 Q. Wang, C.-C. Chueh, M. Eslamian and A. K.-Y. Jen, ACS Appl. Mater. Interfaces, 2016, 8, 32068–32076.
- 4 C. Zuo and L. Ding, Adv. Energy Mater., 2017, 7, 1601193.
- G. Adam, M. Kaltenbrunner, E. D. Głowacki, D. H. Apaydin, M. S. White, H. Heilbrunner, S. Tombe, P.
 Stadler, B. Ernecker, C. W. Klampfl, N. S. Sariciftci and M. C. Scharber, *Sol. Energy Mater. Sol. Cells*, 2016, 157, 318–325.
- A. Giuri, S. Masi, S. Colella, A. Kovtun, S. Dell'Elce, E. Treossi, A. Liscio, C. Esposito Corcione, A. Rizzo and
 A. Listorti, *Adv. Funct. Mater.*, 2016, 26, 6985–6994.
- 7 Y. Jiang, C. Li, H. Liu, R. Qin and H. Ma, J. Mater. Chem. A, 2016, 4, 9958–9966.
- 8 C. Y. Liu, Z. S. Su, W. L. Li, F. M. Jin, B. Chu, J. B. Wang, H. F. Zhao, C. S. Lee, J. X. Tang and B. N. Kang, Org. Electron., 2016, 33, 221–226.

- 9 G. Kakavelakis, K. Alexaki, E. Stratakis and E. Kymakis, *RSC Adv.*, 2017, 7, 12998–13002.
- S. H. Chang, W. N. Chen, C. C. Chen, S. C. Yeh, H. M. Cheng, Z. L. Tseng, L. C. Chen, K. Y. Chiu, W. T. Wu, C.
 T. Chen, S. H. Chen and C. G. Wu, *Sol. Energy Mater. Sol. Cells*, 2017, **161**, 7–13.
- 11 D. Liu, Y. Li, J. Yuan, Q. Hong, G. Shi, D. Yuan, J. Wei, C. Huang, J. Tang and M.-K. Fung, *J. Mater. Chem. A*, 2017, **5**, 5701–5708.
- 12 W. Sun, Y. Li, Y. Xiao, Z. Zhao, S. Ye, H. Rao, H. Ting, Z. Bian, L. Xiao, C. Huang and Z. Chen, *Org. Electron.*, 2017, **46**, 22–27.
- H. Di, T. T.-H. Goh, J. Kong, Y. Zheng, S. Zhao, Z. Xu, A. A. D. Taylor, D. Huang, T. T.-H. Goh, J. Kong, Y.
 Zheng, S. Zhao, Z. Xu, A. A. D. Taylor, H. Di, T. T.-H. Goh, J. Kong, Y. Zheng, S. Zhao, Z. Xu and A. A. D.
 Taylor, *Nanoscale*, 2017, 9, 4236–4243.
- 14 J. Huang, K. Wang, J. Chang, Y.-Y. Jiang, Q. Xiao and Y. Li, J. Mater. Chem. A, 2017, 5, 13817–13822.
- 15 J.-M. Wang, Z.-K. Wang, M. Li, K.-H. Hu, Y.-G. Yang, Y. Hu, X.-Y. Gao and L.-S. Liao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 13240–13246.