SUPPORTING INFORMATION

Cyanide-metal framework derived CoMoO₄/Co₃O₄ hollow porous octahedrons as advanced anode for high performance lithium ion batteries

Yingying Chen,^{*a,b*} Yue Wang,^{*b*} Xiaoping Shen, ^{**a*} Rong Cai,^{*b*} Hongxun Yang,^{*b*} Keqiang Xu,^{*a*} Aihua Yuan ^{*b*} and Zhenyuan Ji ^{*a*}

^a School of Chemistry & Chemical Engineering, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China ^b School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China

*Corresponding author: Xiaoping Shen, Email address: <u>xiaopingshen@163.com</u>

Fig. S1 O 1s XPS spectrum

Fig. S2 N₂ adsorption/desorption isotherms (77 K) of $Co_2[Mo(CN)_8] \cdot xH_2O$. The inset shows the corresponding pore size distribution.

Fig. S3 Rate capability of $CoMoO_4/Co_3O_4$ hollow porous octahedrons as anode materials for LIBs at different current densities and cycling performance over 30 cycles at 100 mA g⁻¹.

Elements	Weight%	Atom%
Со	39.6	24.2
Мо	32.2	12.1
0	28.2	63.7

Table S1. Elemental composition of the $CoMoO_4/Co_3O_4$ composite measured by EDS.

Electrode material	Initial discharge	Current	Coulombic	capacity	Ref.
	capacity	density	efficiency	retention	
	(mA h g ⁻¹)	(mA g ⁻¹)	(%)	%/cycle	
Co ₃ O ₄ @CoMoO ₄	1175.1	200	86.9	96.1/100	this work
CoMoO ₄ hollow nanostructure	1151	500	72	93 / 200	1
Rattle -type CoMoO ₄ microspheres	1019	500	83	100 /150	2
CoMoO ₄ -carbon microspheres	896	500	72	90 /150	2
3D CoMoO ₄	1083	100	83.6	87.6/200	3
CoMoO ₄ /carbon fabric	1148	100	83.5	87.7/150	4
CoMoO ₄	1035	100	76.4	95.6/ 50	5
CoMoO ₄ -G	1046	100	82.7	95.6/ 50	6
CoMoO ₄ /rGO	1211	100	80.9	<50/ 100	7
CoMoO ₄	1021	100	72.9	<50/100	7

Table S2 Comparison of electrochemical performances of CoMoO₄/Co₃O₄ hollow porous octahedrons with previously reported Mo-based electrodes for LIB.

- 1 Y. S. Wang, Y. F. Sun, X. Zhang, Y. H. Wen, J. X. Guo, RSC Adv., 2016, 6, 51710-51715.
- 2 Y. N. Ko, Y. C. Kang and S. B. Park, RSC Adv., 2014, 4, 17873–17878.
- 3 H. Yu, C. Guan, X. H. Rui, B. Ouyang, B. Yadian, Y. Z. Huang, H. Zhang, H. E. Hoster, H. J. Fan and Q.Y. Yan, *Nanoscale*, 2014, 6, 10556–10561.
- 4 B. Wang, S. M. Li, X. Y. Wu, J. H. Liu, W. N. Tian and J. Chen, New J. Chem., 2016, 40, 2259– 2267.
- 5 C. T. Cherian, M. V. Reddy, S. C. Haur and B. V. R. Chowdari, ACS Appl. Mater. Interfaces, 2013, 5, 918–923.
- 6 J. Guo, H. Zhu, S. Zhou, Y. Sun and X. Zhang, Ionics, 2015, 21, 2993-2999.
- 7 T. Yang, H. N. Zhang, Y. Z. Luo, L. Mei, D. Guo, Q. H. Li and T. H. Wang, *Electrochim. Acta.*, 2015, **158**, 327–332.

Table S3 Comparison of capacity performances of CoMoO₄/Co₃O₄ hollow porous octahedrons with previously reported pure Co₃O₄ and MoO₃ nanostructured materials.

Electrode material	Initial	Current density	Coulombic	capacity	Ref.
	discharge	discharge capacity (mA g ⁻¹)	efficiency	retention	
	capacity		(0/)	%/cycle	
	$(\mathbf{m} \mathbf{A} \mathbf{b} \mathbf{a}^{-1})$		(70)		
	(IIIA II g ⁻)				
Co ₃ O ₄ @CoMoO ₄	1175.1	200	86.9	96.1/100	this work
Mesoporous Co ₃ O ₄ octahedrons	1567	200	76.3	76/60	8
Co ₃ O ₄ hollow octahedral cages	1100.1	178	75.6	58.1/50	9
Co ₃ O ₄ nano-octahedrons	1118.5	100	73.1	85.4/200	10
Co ₃ O ₄ micro-octahedra	896.2	100	46.8	32.2/200	10
Co ₃ O ₄ octahedrons	1098	100	90.2	86.1/50	11
Porous Co ₃ O ₄ nanobelts	2307	100	54	37.1/60	12
Porous tubular Co ₃ O ₄	1254	100	71.6	48.8/100	13
Co ₃ O ₄ nanoparticles	1151	100		65.1/50	14
Co ₃ O ₄ microfibers	1177.4	100	82.9	76.6/200	15
MoO ₃ nanorods	1418.3	150	65.2	55/150	16
a-MoO ₃ nanorod	1182	30	99.45	58.8/189	17
a-MoO ₃ nanoflower	1432.5	550	71.2	56.6/100	18
MoO ₃ nanorods	1461.3	550	63.8	14.6/100	19
MoO ₃ nanobelt	300	30		55.5/50	20

8 J. X. Guo, L. Chen, X Zhang, B. Jiang and L. Z. Ma, *Electrochim. Acta.*, 2014, 129, 410–415.

9 X. Wang, L. Yu, X. L. Wu, F. Yuan, Y. G. Guo, Y. Ma and J. Yao, *J. Phys. Chem. C*, 2009, **113**, 15553–15558.

10 G. L. Xu, J. T. Li, L. Huang, W. Lin and S. G. Sun, Nano Energy, 2013, 2, 394–402.

- 11 X. L. Xiao, X. F. Liu, H. Zhao, D. F. Chen, F. Z. Liu, J. H. Xiang, Z. B. Hu, and Y. D. Li, Adv. Mater., 2012, 24, 5762–5766
- 12 F. C. Zheng, K. Shi, S. Xu, X.Y. Liang, Y.C. Chenand Y.G. Zhang, *RSC Adv.*,2016, **6**, 9640–9646.

13 X. Zhang, Z. Yang, C. Li, A.J.Xie and Y.H. Shen, Appl. Surface Sci., 2017,403, 294–301.

- 14 B. Yan, L. Chen, Y. J. Liu, G. X. Zhu, C. G. Wang, J. H. Zhang, G. Yang, H. T. Ye and A. H. Yuan, *Crystengcom*, 2014, **16**, 10227–10234.
- 15 Y. Y. Chen, Y. Wang, H. X. Yang, H. Gan, X. W. Cai, X. M. Guo, B. Xu, M. F. Lü and A. H. Yuan, *Ceram. Int.*, 2017, 43, 9945–9950.
- 16 J. B. Zhou, N. Lin, L. B. Wang, K. Zhang, Y. C. Zhu and Y. T Qian, J. Mater. Chem. A, 2015, 3, 7463–7468.
- 17 R. Nadimicherla, R. H. Zha, L. Wei and X. Guo, J. Alloys Compd., 2016, 687, 79-86.
- 18 Q. D. Yang, H. T. Xue, X. Yang, Z. Q. Guan, Y. H. Cheng, S. W. Tsang and C. S. Lee, *Electrochim. Acta.*, 2015, 185, 83–89.
- 19 R. Nadimicherla, Y. L. Liu, K. Q. Chen and W. Chen, Solid State Sciences, 2014, 34, 43-48.
- 20 J. F. Huang, J. W. Yan, J. Y. Li, L. Y. Cao, Z. W. Xu, J. P. Wu, L. Zhou and Y. J. Luo, J. *Alloys Compd.*, 2016, **688**, 588–595.