Electronic Supplementary Information

Experimental Section

Materials

Nickel nitrate hexahydrate (Ni(NO₃)₂· $6H_2O$) was purchased from Aladdin Ltd. in Shanghai. Ammonium fluoride (NH₄F), urea and nickel chloride (NiCl₂) were purchased from Beijing Chemical Works. Pt/C (20 wt% Pt on Vulcan XC-72R) and 5 wt% Nafion solution were purchased from Alfa Aesar (China) Chemicals Co. Ltd. Ti mesh was purchased from Phychemi Hong Kong Company Limited. The water use throughout all experiments was purified through a Millipore system. All the reagents were used as received without further purification.

Preparation of Ni(OH)₂/TM

In a typical procedure, 4.5 mmol Ni(NO₃)₂·6H₂O, 8 mmol NH₄F and 20 mmol urea were dissolved in 80 mL distilled water and stirred to form a clear solution. Then the aqueous solution and Ti mesh (TM) were transferred to a 50 ml Teflon-lined stainless-steel autoclave. It was heated at 120 °C for 6 h to achieve Ni(OH)₂/TM. After the autoclave cooled down naturally, the resulting TM was taken out and washed with distilled water and ethanol, followed by drying 2 h at 60 °C to obtain Ni(OH)₂/TM.

Preparation of Ni₃N/TM

To prepare Ni_3N/TM , $Ni(OH)_2/TM$ was placed in a tube furnace, and heated at 380 °C for 3 h with a heating speed of 5 °C min⁻¹ in NH₃ atmosphere, and then naturally cooled to room temperature under NH₃. Finally, the black Ni₃N/TM was collected for further characterization.

Preparation of Ni(OH)₂-Ni₃N/TM

In a typical synthesis, the electrodeposition of Ni(OH)₂ on Ni₃N/TM was carried out in a three-electrode cell (Ni₃N/TM as working electrode; a graphite plate as counter electrode; saturated calomel electrode (SCE) as reference electrode). The electrodeposition procedure was performed according to previous report. The electrolyte was an aqueous solution of 0.1 M NiCl₂. The electrodeposition experiments were all carried out at a constant cathodic potential of -1.0 V for 300 s. After the deposition, Ni(OH)₂-Ni₃N/TM was removed, rinsed with deionized water several times and dried at 60 $^{\circ}$ C in air. The loading for Ni(OH)₂ on Ni₃N/TM nanosheets was about 3.2 mg cm⁻².

Characterizations

The XRD patterns were obtained from a LabX XRD-6100 X-ray diffractometer with Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). Scanning electron microscopy (SEM) measurements were performed on a Hitachi S-

4800 field emission scanning electron microscope at an accelerating voltage of 20 kV. Transmission electron microscopy (TEM) measurements were made on a Hitachi H-8100 electron microscopy (Hitachi, Tokyo, Japan) with an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source.

Electrochemical measurements

Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a conventional three electrode system, using $Ni(OH)_2$ - Ni_3N/TM as working electrode, graphite plate as counter electrode and Hg/HgO electrode as reference electrode. All tests were carried out at room temperature.

Fig. S1. HRTEM images taken from (a) Ni₃N , (b)Ni(OH)₂-Ni₃N/TM for 300s and (e) Ni(OH)₂-Ni₃N/TM for 540s.

Fig. S2. The amount of H_2 theoretically calculated and experimentally measured versus time for HER of Ni(OH)₂-Ni₃N/TM in 1 M KOH.

Fig. S3. SEM images of the $Ni(OH)_2$ - Ni_3N/TM catalysts before (a) and after (b) reactions.

Fig. S4. LSV curves of the Ni(OH)₂-Ni₃N/TM and after reactions for 24h.

Fig. S5. LSV curves of the Ni(OH)₂-Ni₃N/TM with different electrodeposition time.

Table S1. Comparison of the HER activity for several recently reported catalysts.

Catalysts	Overpotential (mV vs. RHE)	Current density (mA cm ⁻²)	Ref.
Ni(OH) ₂ -	72	20	
Ni ₃ N/TM	123	50	This work
	181	100	
Ni ₃ N/NF	177	20	1
TiN@Ni ₃ N	34	20	2
Ni ₃ N/Ni-foam	290	80	3
NiCo ₂ S ₄ NA/CC arrays	228	20	4
NiS/Ni foam	220	80	5
Nickel phosphorus	150	80	6
Ni wire	350	10	7
NT:	83	50	8
Fe ₂ Ni ₂ N NPAs	110	10	9
NixPy-325	160	20	10
Ni-P film	110	20	11
Ni ₂ P/Ni	120	20	12
Ni@C-400 NSs	110	10	13
NiMo HNRs	92	10	14
NiSe NW	96	10	15

Reference

- 1. Z. Xing, Q. Li and D. Wang, Electrochim. Acta, 2016, 191, 841–845.
- 2. Q. Zhang, Y. Wang and Y. Wang, J. Mater. Chem. A, 2016, 4, 5713–5718.
- 3. S. Li, Y. Wang, L. Zhang, S. Peng, A. M. Al-Enizi, H. Zhang, X. Sun and G.

Zheng, Adv. Energy Mater., 2015, 5, 1501661.

- D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, Nanoscale, 2015, 7, 15122– 15126.
- W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, Chem. Commun., 2016, 52, 1486–1489.
- 6. Q. Liu, S. Gu and C. Li, J. Power. Sources, 2015, 299, 342-346.
- J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis and H. B. Gray, ACS Catal., 2013, 3, 166–169.
- Y. Wang, L. Chen, X. Yu, Y. Wang and G. Zheng, *Adv. Energy Mater.*, 2017, 7, 1601390.
- M. Jiang, Y. Li, Z. Lu, X. Sun and X. Duan, *Inorg. Chem. Front.*, 2016, 3, 630–634.
- 10. J. Li, J. Li, X. Zhou, Z. Xia, W. Gao, Y. Ma and Y. Qu, ACS Appl. Mater. Interfaces, 2016, 8, 10826–10834.
- 11. N. Jiang, B. You, M. Sheng and Y. Sun, Chem Cat Chem, 2016, 8, 106-112.
- 12. B. You, N. Jiang, M. Sheng, M. W. Bhushan and Y. Sun, *ACS Catal*, 2016, 6, 714–721.
- 13. W. Xi, Z. Ren, L. Kong, J. Wu, S. Du, J. Zhu, Y. Xue, H. Meng and H. Fu, *J. Mater. Chem. A*, 2016, **4**, 7297–7304.
- 14. J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He and A. M. Asiri, *J. Mater. Chem. A*, 2015, **3**, 20056–20059.
- C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, *Angew. Chem., Int. Ed.*, 2015, 54, 9351–9355.