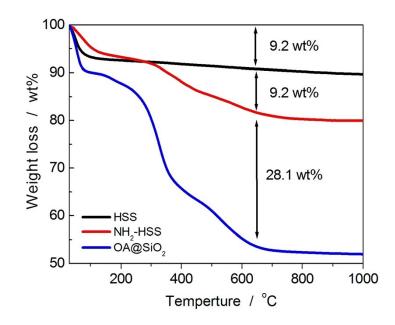
Electronic Supplementary Information (ESI)

Synthesis of Ag nanoparticles encapsulated in hollow silica spheres for efficient and selective removal of low-concentrated sulfur compounds


Kensei Fujiwara,^{a,c} Yasutaka Kuwahara,^{a,b} Yuki Sumida,^a Hiromi Yamashita^{a,b*}

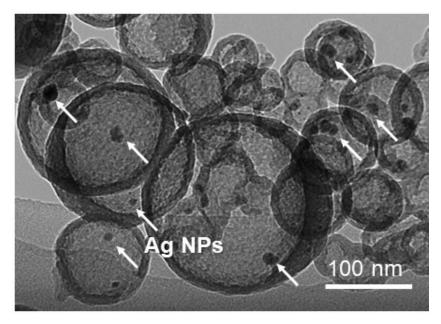
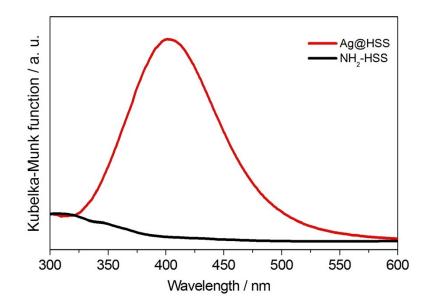
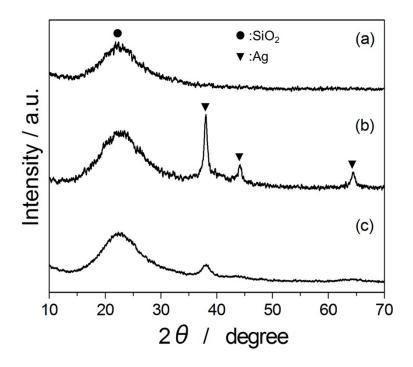
^{*a*} Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

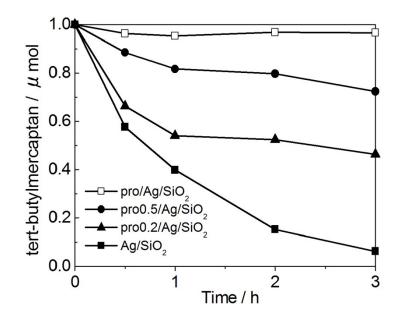
^b Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan

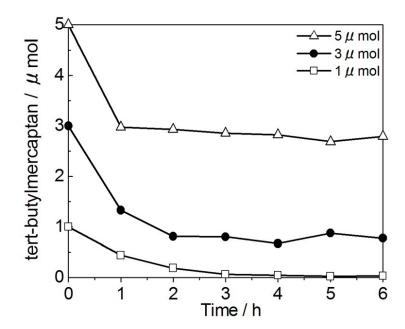
^c Paper Technology Center, Ehime Institute of Industrial Technology, 127 Mendori-cho, Shikokuchuo 799-0113, Japan

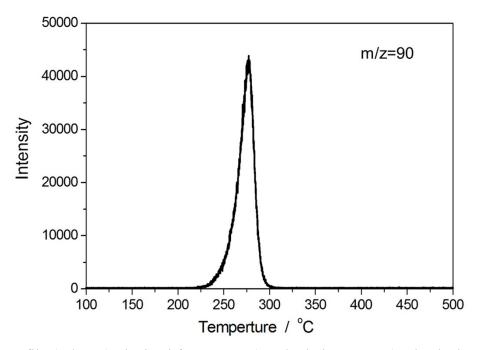
* Tel: (+81) 6-6879-7457, Fax: (+81) 6-6879-7457 E-mail: yamashita@mat.eng.osaka-u.ac.jp

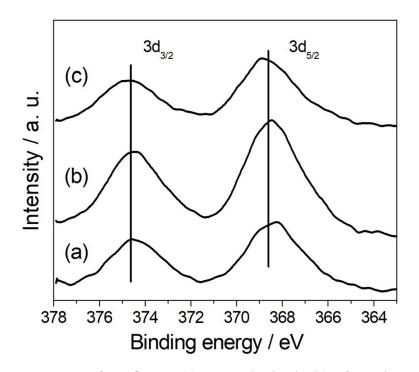
Fig. S1 Weight loss curves of HSS, NH₂-HSS and OA@SiO₂ in a flow of air. The weight loss of HSS seen at 100 °C < T (corresponding to 9.2 wt%) is due to the removal of absorbed water. The NH₂-HSS showed the additional weight loss seen at T < 650 °C (corresponding to 9.2 wt%) which is attributed to the breakdown of the amine groups and the alkyl groups of APTES. The OA@SiO₂ shows the further weight loss seen at T < 650 °C (corresponding to 21.7 wt%) which is due to combustion of the oleic acid. From these results, it is confirmed that the prepared NH₂-HSS retained the amine groups while the oleic acid was removed.


Fig. S2 TEM image of Ag@HSS (wide region).


Fig. S3 UV-vis spectra of NH₂-HSS and Ag@HSS. The spectra of Ag@HSS showed the peak at 400 nm derived from AgNPs.


Fig. S4 XRD patterns of (a) NH₂-HSS, (b) Ag/SiO₂ and (c) Ag@HSS. The broad peak seen at $2\theta = 15-30^{\circ}$ is associated with amorphous nature of silica.


Fig. S5 Adsorption kinetics of TBM (*tert*-buthylmercaptan) over Ag/SiO_2 and protein adsorbed Ag/SiO₂. The amount of adsorbed protein to the surface of 10 mg of Ag/SiO₂ were 2 mg (pro0.2/Ag/SiO₂)), 5 mg (pro0.5/Ag/SiO₂) and 10 mg (pro/Ag/SiO₂).

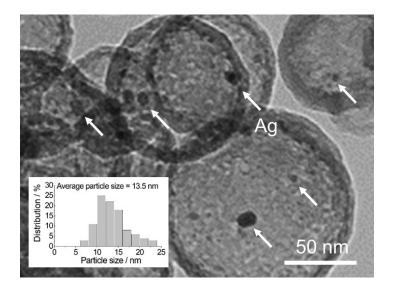

Fig. S6 Adsorption kinetics of 1 µmol, 3 µmol and 5 µmol of TBM (*tert*-buthylmercaptan) over Ag@HSS.

Fig. S7 EGA profile (m/z=90) obtained from TBM (*tert*-buthylmercaptan) adsorbed Ag@HSS. The peak caused by the desorption of TBM is observed around 220-310 °C, confirming that the adsorbed TBM is completely desorbed from Ag/@HSS by heat treatment at 500 °C.

Fig. S8 Ag 3d XPS spectra of Ag@HSS (a) as-synthesized, (b) after adsorption of TBM (*tert*-buthylmercaptan), (c) after regeneration for 2 h at 500 °C.

Fig. S9 TEM image of Ag@HSS after regeneration treatment for 2 h at 500 °C. The inset shows the particle size distribution diagram of AgNPs.

Sample	Adsorbate ^a	Support	Adsorption capacity [mol-S / mol-Ag]	Ref.
Ag@HSS	TBM	Hollow silica sphere	0.48	This study
AgNa-Y	TBM	Y-zeolite	0.34	1
AgNa-Y	TBM	Y-zeolite	0.35	2
Ag-X	TBM	X-zeolite	0.62	3
AgSi	TBM	Amorphous silica	1.06	4
Ag-MSN	DBT	Mesoporous silica	0.21	5
		nanoparticles		

Table S1 Adsorption capacities of Ag@HSS and reported samples toward sulfur compounds.

^{*a*} TBM = *tert*-butylmercaptan, DBT = Dibenzothiophen

[1] D. Lee, E. Y. Ko, H. C. Lee, S. Kim and E. D. Park, Appl. Catal. A, 2008, 334, 129-136.

[2] S. Satokawa, Y. Kobayashi and H. Fujiki, Appl. Catal. B, 2005, 56, 51-56.

[3] R. Barzamini, C. Falamaki and R. Mahmoudi, Fuel, 2014, 130, 46-53.

[4] K. Shimizu, S. Komai, T. Kojima, S. Satokawa and A. Satsuma, *J. Phys. Chem. C*, 2007, **111**, 3480-3485.

[5] J. M. Palomino, D. T. Tran, J. L. Hauser, H. Dong and S. R. J. Oliver, *J. Mater. Chem. A*, 2014, **2**, 14890-14895.