Effective Ca-doping in Y_{1-x}Ca_xBaCo₂O_{5+δ} Candidate Cathode

Materials for Intermediate Temperature Solid Oxide Fuel Cells

Zhihong Du^{a,b}, Chunlin Yan^a, Hailei Zhao^{a,b,*}, Yang Zhang^a, Chunyang Yang^a, Sha Yi^a, Yao Lu^a, Konrad Świerczek^{c,d}

 ^aSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
 ^bBeijing Municiple Key Lab for Advanced Energy Materials and technologies, Beijing 100083, China
 ^cAGH University of Science and Technology, Faculty of Energy and Fuels, Department of Hydrogen Energy, al. A. Mickiewicza 30, 30-059 Krakow, Poland
 ^dAGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland

Supplementary Information

Fig. S1. Structural model of the YCBC materials used for *ab initio* calculations. Tetragonal cell with 38 atoms Y₄Ba₄Co₈O₂₂ (left) and Y₃CaBa₄Co₈O₂₂ (right) corresponds to a 2×2×1 supercell of the YBaCo₂O_{5.5}.

*Corresponding author at: School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. Tel.: +86 10 82376837; Fax.: +86 10 82376837;

E-mail address: hlzhao@ustb.edu.cn (H. Zhao).

Fig. S2. Rietveld refinement of room temperature XRD patterns of the $Y_{1-x}Ca_xBaCo_2O_{5+\delta}$: (a) x = 0, (b) x = 0.1 and (c) x = 0.2. (d) presents the very weak reflections originated from the oxygen vacancy-ordered $3 \times 3 \times 1$ supercell.

Tab. S1. Structural parameters derived from Rietveld refinements for the considered $Y_{1-x}Ca_xBaCo_2O_{5+\delta}$. Space group is *P4/mmm*; Y 1*c* (0.5, 0.5, 0); Ba 1*d* (0.5, 0.5, 0.5); Co 2*g* (0, 0, *z*); O1 1*b* (0, 0, 0.5); O2 4*i* (0, 0.5, *z*); O3 1*a* (0, 0, 0). Here O1 corresponds to the oxygen in BaO plane, O2 in CoO₂ plane, and O3 in YO_{δ} plane. The refined occupancy factor Occ(O3) is also given.

	x = 0	<i>x</i> = 0.1	<i>x</i> = 0.2
z(Co)	0.245(1)	0.245(1)	0.244(1)
U _{iso} (Co)	0.010(1)	0.011(1)	0.010(1)
<i>z</i> (O2)	0.199(1)	0.197(1)	0.195(1)
Occ(O3)	0.44(2)	0.42(2)	0.38(2)
$U_{iso} (O1 = O2 = O3)$	0.023(2)	0.025(2)	0.028(2)
U _{iso} (Ba)	0.010(1)	0.012(1)	0.011(1)
$U_{iso} (Y = Ca)$	0.025(1)	0.022(1)	0.020(1)
$d_{\mathrm{Ba-O2}}(\mathrm{\AA})$	2.977(5)	2.988(5)	2.997(5)
$d_{\mathrm{Ba-O1}}$ (Å)	2.7388(1)	2.7404(1)	2.7425(1)
d _{Ba-Co} (Å)	3.339(2)	3.344(3)	3.347(2)
$d_{ m Y-O2}(m \AA)$	2.443(4)	2.436(4)	2.431(4)
$d_{ m Y-O3}(m \AA)$	2.7388(1)	2.7404(1)	2.7425(1)
$d_{ m Y-Co}(m \AA)$	3.300(2)	3.298(3)	3.298(2)
$d_{ ext{Co-O1}}$ (Å)	1.910(4)	1.917(5)	1.919(4)
$d_{ ext{Co-O2}}$ (Å)	1.968(2)	1.971(2)	1.974(2)
$d_{ ext{Co-O3}}$ (Å)	1.841(4)	1.835(5)	1.832(4)
$d_{ m O2-O3}({ m \AA})$	2.444(4)	2.437(4)	2.431(4)

Fig. S3. Refined crystal structure of YBaCo₂O_{5+ δ} at room temperature in *P*4/*mmm* space group. The oxygen migration path between O2 and O3 sites in the Y-O3 layer is shown.

Fig. S4. XRD pattern of $Y_{0.8}Ca_{0.2}BaCo_2O_{5+\delta}$ after annealing at 850 °C for 100 h in air.

Fig. S5 EDX analysis of YCBC-2 cathode (a) before and (b) after the long term stability test. The average chemical composition were calculated.

Fig. S6. SEM micrographs of $Y_{1-x}Ca_xBaCo_2O_{5+\delta}$ (surface and cross-section): (a), (d) x = 0; (b), (e) x = 0.1 and (c), (f) x = 0.2 samples used for electrical conductivity measurements.

Fig. S7. Exemplary impedance spectra for symmetrical cell with YCBC-2 cathode in air at 650 °C. Data were fitted using L- R_s -(QR) equivalent circuit. Due to the symmetrical configuration, equation ASR = $R \times S/2$ is used to evaluate the values of area specific resistance, where R is the refined polarization resistance from the equivalent circuit, S is the active area of the YCBC cathode (as shown in the figure).

Fig. S8. Short term stability of YCBC-2-GDC/LSGM/LDC/Sr₂FeMo_{0.65}Ni_{0.35}O_{6- δ} single cell operated under a constant voltage of 0.714 V at 750 °C. The flow of H₂ was 60 cm³ min⁻¹.

temperature / °C	$ASR / \Omega cm^2$				
	x = 0	x = 0.1	x = 0.2		
650	0.298	0.203	0.142		
700	0.125	0.087	0.068		
750	0.058	0.044	0.032		
800	0.031	0.021	0.018		
850	0.014	0.012	0.010		

Tab. S2. Calculated ASR values for the $Y_{1-x}Ca_xBaCo_2O_{5+\delta}$ cathodes.

Tab. S3. Comparison of peak power density for LSGM electrolyte-supported cells between $Y_{0.8}Ca_{0.2}BaCo_2O_{5+\delta}$ and selected double perovskite cathodes.

		Floatrolyta	Power		
Cathode	anode	thickness / μm	Temperature	density	reference
			/ °C	/ mW	
				cm ⁻²	
$NdBa_{0.5}Sr_{0.5}Co_2O_{5+\delta}$	Ni-GDC	300	850	904	[1]
$Pr_{1.1}Ba_{0.9}Co_2O_{5+\delta}$	Ni-SDC	300	800	732	[2]
$PrBa_{0.5}Sr_{0.5}Co_2O_{5+\delta}$	Ni-GDC	300	800	1021	[3]
$PrBaC_2O_{5+\delta}$ -SDC				758	
$NdBaC_{2}O_{5+\delta}\text{-}SDC$	Ni-SDC	300	800	707	[4]
$SmBaC_{2}O_{5+\delta}\text{-}SDC$				685	
$GdBaC_2O_{5+\delta}$ -SDC				608	
$YBaCo_{1.4}Cu_{0.6}O_{5+\delta}$	Ni-GDC	300	850	815	[5]
$YBa_{0.5}Sr_{0.5}Co_{1.4}Cu_{0.6}O_{5+\delta}$	Ni-GDC	300	850	398	[6]
$SmBa_{0.5}Sr_{0.5}CoCuO_{5+\delta}$	NiCu–GDC	300	850	857	[7]
NdBaCoFeO _{5+δ} -30SDC	Ni-SDC	300	800	892	[8]
$PrBa_{0.8}Ca_{0.2}Co_2O_{5+\delta}$	$PrBaMn_2O_{5+\delta}$	250	700	460	[9]
			850	1066	
Y _{0.8} Ca _{0.2} BaCo ₂ O _{5+δ} -GDC	Sr ₂ FeMo _{0.65} N	300	800	841	This
	$i_{0.35}O_{6-\delta}$		750	634	work
			700	430	

References:

- [1] S. Lü et al. J. Power Sources, 2010, **195**, 8094-8096.
- [2] L. Jiang et al. *Electrochim. Acta*, 2014, **133**, 364–372.
- [3] Lü S, Long G, Meng X, et al. Int. J. Hydrogen Energy, 2012, 37, 5914-5919.
- [4] Q. Zhou et al. J. Power Sources, 2010, 195, 2174-2181.
- [5] Zhang Y, Yu B, Lü S, et al. *Electrochim. Acta*, 2014, **134**, 107-115.
- [6] S. Lü et al. Ceram. Int., 2014, 40, 14919-14925.
- [7] Wang B, Long G, Li Y, et al. Int. J. Hydrogen Energy, 2016, 41, 13603-13610.
- [8] Jin F, Liu J, Shen Y, et al. J. Alloys Compd., 2016, 685, 483-491.
- [9] Lim C, Jun A, Jo H, et al. J. Mater. Chem. A, 2016, 4, 6479-6486.