## **Supplementary Information**

## The Crystal Structure and Electrical Properties of the Oxide Ion

## Conductor Ba<sub>3</sub>WNbO<sub>8.5</sub>

K. S. McCombie<sup>a</sup>, E. J. Wildman<sup>a</sup>, S. Fop<sup>a</sup>, R. I. Smith<sup>b</sup>. J. M. S. Skakle<sup>a</sup> and A. C. Mclaughlin<sup>a</sup>

<sup>a</sup> Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE,

United Kingdom

<sup>b</sup> ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK

а

b



Figure S1 SEM micrographs of the surface (a) and section (b) of a pellet of  $Ba_3WNbO_{8.5}$ 



**Figure S2** Equivalent circuit used to model the impedance data. The same equivalent circuit is reported in reference 1. R indicates a resistor and CPE a constant phase element. R1 and R2 represent the bulk and grain boundary respectively.

## Reference

1. H. Zhang, A.Suresh, C. B. Carter and B. A. Wilhite, *Solid State Ionics*, 2014, **266**, 58-67.

**Table S1.** Refined atomic parameters for Ba<sub>3</sub>WNbO<sub>8.5</sub> from the Rietveld fit of the neutron powder diffraction data recorded on the Polaris diffractometer.

| _ | Atom  | Site       | х          | у          | Z           | Occupancy | U <sub>11</sub> (Ų)   | U <sub>22</sub> (Ų) | U <sub>33</sub> (Ų) | U <sub>12</sub> (Ų) | U <sub>13</sub> (Ų) | U <sub>23</sub> (Ų) |
|---|-------|------------|------------|------------|-------------|-----------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|   |       |            |            |            |             |           |                       |                     |                     |                     |                     |                     |
|   | Ba(1) | За         | 0          | 0          | 0           | 1         | 0.0005(5)             | 0.0005(5)           | 0.0053(9)           | 0.0002(3)           | 0                   | 0                   |
|   | Ba(2) | 6 <i>c</i> | 0          | 0          | 0.21005(9)  | 1         | 0.0143(4)             | 0.0143(4)           | 0.0168(10)          | 0.0071(2)           | 0                   | 0                   |
|   | W(1)  | 6 <i>c</i> | 0          | 0          | 0.39288(10) | 0.387(9)  | 0.0047(3)             | 0.0047(3)           | 0.0271(10)          | 0.0024(2)           | 0                   | 0                   |
|   | Nb(1) | 6 <i>c</i> | 0          | 0          | 0.39288(10) | 0.428(9)  | 0.0047(3)             | 0.0047(3)           | 0.0271(10)          | 0.0024(2)           | 0                   | 0                   |
|   | W(2)  | 3b         | 0          | 0          | 0.5         | 0.23(2)   | 0.022(3)              | 0.022(3)            | 0.40(2)             | 0.0110(13)          | 0                   | 0                   |
|   | Nb(2) | 3b         | 0          | 0          | 0.5         | 0.14(2)   | 0.022(3)              | 0.022(3)            | 0.40(2)             | 0.0110(13)          | 0                   | 0                   |
|   |       |            |            |            |             |           |                       | 0.0167(3)           |                     |                     |                     | -                   |
|   | O(1)  | 18h        | 0.17444(8) | 0.82556(8) | 0.10596(4)  | 1         | 0.0167(3)             |                     | 0.0240(5)           | 0.0134(4)           | 0.0030(2)           | 0.0030(2)           |
|   | O(2)  | 9e         | 0.5        | 0          | 0           | 0.758(3)  | 0.0175(6)             | 0.0299(10)          | 0.0207(10)          | 0.0150(5)           | 0.0113(5)           | 0.0226(9)           |
|   | O(3)  | 18h        | 0.050(2)   | 0.010(4)   | 0.3209(11)  | 0.038(2)  | 0.025(6) <sup>a</sup> |                     |                     |                     |                     |                     |

<sup>a</sup> U<sub>iso</sub> (Å)

Table S2. Selected bond lengths calculated from the Rietveld refinement of powder neutron diffraction data of  $Ba_3MoNbO_{8.5}$  and  $Ba_3WNbO_{8.5}$ .

| Ba <sub>3</sub> MoNbO <sub>8.5</sub> | Ba₃WNbO <sub>8.5</sub>                                                                                                         |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 2.8080(6)                            | 2.8427(8)                                                                                                                      |
| 2.96372(2)                           | 2.92844(5)                                                                                                                     |
| 3.015(5)                             | 3.170(7)                                                                                                                       |
| 2.799(2)/2.997(2)                    | 2.812(2)/2.9520(3)                                                                                                             |
| 3.180(2)                             | 3.092(2)                                                                                                                       |
| 2.447(3)                             | 2.38(2)                                                                                                                        |
| 1.8337(8)                            | 1.884(1)                                                                                                                       |
| 2.2065(8)                            | 2.103(1)                                                                                                                       |
| 1.766(4)                             | 1.59(2)                                                                                                                        |
| 2.1260(6)                            | 2.0550(9)                                                                                                                      |
| 0                                    | 0.32                                                                                                                           |
|                                      | $Ba_{3}MoNbO_{8.5}$ 2.8080(6) 2.96372(2) 3.015(5) 2.799(2)/2.997(2) 3.180(2) 2.447(3) 1.8337(8) 2.2065(8) 1.766(4) 2.1260(6) 0 |

\*D is the displacement of the M(1) atom closer to the O(2)/O(3) sites, in respect to its equilibrium position in Ba<sub>3</sub>MoNbO<sub>8.5</sub>.

Table S3. Selected bond angles calculated from the Rietveld refinement of powder neutron diffraction data of  $Ba_3MoNbO_{8.5}$  and  $Ba_3WNbO_{8.5}$ .

| Angle (°)                   | Ba <sub>3</sub> MoNbO <sub>8.5</sub> | Ba <sub>3</sub> WNbO <sub>8.5</sub> |
|-----------------------------|--------------------------------------|-------------------------------------|
| Ο(1)-Μ(1)-Ο(1) (α)          | 102.83(5)                            | 95.66(9)                            |
| O(1)-M(1)-O(3) (β)          | 114.8(2)                             | 125.2(4)                            |
| O(1)-M(1)-O(2) ( <b>y</b> ) | 85.51(2)                             | 87.91(2)                            |
| O(1)-M(1)-O(2) ( <b>y</b> ) | 166.34(7)                            | 174.67(11)                          |
| O(2)-M(1)-O(2) (δ)          | 84.38(4)                             | 88.26(7)                            |
| O(1)-M(2)-O(1)              | 84.79(2)                             | 85.58(3)                            |
| O(1)-M(2)-O(1)              | 95.213(2)                            | 94.43(3)                            |



**Fig. S3** A superimposition of the coordination of the  $M(1)-O(1)_3O(3)$  tetrahedra and the  $M(1)-O(1)_3O(2)_3$  octahedra. The black arrows show the modifications of the bond lengths and angles for Ba<sub>3</sub>WNbO<sub>8.5</sub> from the values found for Ba<sub>3</sub>MoNbO<sub>8.5</sub>. The red arrow represents the average M(1) displacement.