Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Supplementary Information: Stable hybrid organicinorganic halide perovskites for photovoltaics from *ab-initio* high-throughput calculations

Sabine Körbel, *a,b*[±] Miguel A.L. Marques, *c* and Silvana Botti**a,d*

Received Date Accepted Date

DOI: 10.1039/xxxxxxxxx

www.rsc.org/journalname

Fig. ESI-1 (Color online) Formation energy E_f (in units of eV/atom) as a function of composition for the system Sn-Cl. Stable compounds (those on the convex hull) are connected by a green line. For the sake of readability, many unstable or metastable phases are omitted.

Convex hull of stability

A convex hull is shown in Fig. ESI-1 for the example of the binary phase diagram Sn–Cl. If a compound is stable with respect to decomposition, it lies by definition on the convex hull; otherwise it lies above the hull. As SnCl lies above the hull, it is unstable, in this case with respect to decomposition into SnCl₂ and Sn.

Lead halides

We fit calculated HSE gaps for lead halides by $E_g^{\text{HSE}} = a \cdot E_g^{\text{PBE}} + b + \Delta E_{\text{SOC}}$, where E_g^{HSE} is the calculated direct HSE gap without

Fig. ESI-2 (Color online) Linear fit between PBE and HSE gaps for lead compounds, used to estimate HSE gaps in cases where we did not perform the actual HSE calculation.

considering spin-orbit coupling (SOC), E_g^{PBE} is the calculated PBE gap, also without considering SOC, ΔE_{SOC} is the gap reduction from spin-orbit coupling calculated on PBE level, and *a* and *b* are fit parameters. The resulting fit parameters are a = 1.14538 and b = 0.447468. ΔE_{SOC} is set to -1.0 eV. The fit is then used to estimate direct gaps of metastable lead halides, for which we did not perform a HSE calculation.

All data

Tables ESI-1 to ESI-5 contain the calculation results for all stable compounds.

^a Institut f
ür Festkörpertheorie und -optik, Friedrich-Schiller-Universit
ät Jena, Max-Wien-Platz 1, 07743 Jena, Germany

^b current address: School of Physics and CRANN, Trinity College, Dublin 2, Ireland
^c Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Ger-

many

^d European Theoretical Spectroscopy Facility

^{*} E-mail: silvana.botti@uni-jena.de

[‡] E-mail: skoerbel@uni-muenster.de

$ \begin{array}{c} \mbox{composition} & E_{hull} \mu/\mu_B & \mbox{fund}, (SOC) & \mbox{direct} (SOC) & \mbox{fund}, & \mbox{direct} m^* & m_e^* & m_h^* & E_F \\ \mbox{H_SinCl}_3 - 1D - W & 0.000 & 0.0 & 2.54(-0.00) & 2.64(-0.00) & 7.11 & 7.14 & >1000 & -0.565 \\ \mbox{GCdB}_3 - 1D - W & 0.000 & 0.0 & 2.44(-0.14) & 3.44(-0.14) & 0.64 & 0.67 & 13.88 & 0.507 \\ \mbox{GCd}_3 - 1D - W & 0.000 & 0.0 & 2.35(-0.25) & 2.35(-0.25) & 3.43 & 4.07 & 21.76 & -0.393 \\ \mbox{H_4Ge}_5 - 3D - OR & 0.000 & 0.0 & 4.13(-0.00) & 4.13(-0.00) & 0.78 & 0.81 & 28.03 & -0.583 \\ \mbox{GCd}_3 - 1D - W & 0.000 & 0.0 & 4.05(-0.00) & 4.06(-0.00) & 4.322 & 59.31 & 159.26 & -1.334 \\ \mbox{H_4Ge}_5 - 1D - W & 0.000 & 0.0 & 5.12(-0.01) & 5.12(-0.01) & 0.42 & 0.44 & 11.27 & -1.211 \\ \mbox{H_5AbB}_3 - 3D - OR & 0.000 & 0.0 & 5.05(-0.00) & 5.06(-0.00) & 0.00 & 0.00 & -0.02 \\ \mbox{GCaCl}_3 - 1D - W & 0.000 & 0.0 & 5.05(-0.00) & 5.06(-0.00) & 0.00 & 0.00 \\ \mbox{GCaCl}_3 - 1D - W & 0.000 & 0.0 & 5.05(-0.00) & 3.33(-0.20) & 8.45 & 11.27 & 33.82 & -0.499 \\ \mbox{MFL}_{ACG}_3 - 1D - W & 0.000 & 0.0 & 3.33(-0.20) & 3.33(-0.20) & 8.45 & 11.27 & 33.82 & -0.499 \\ \mbox{MFL}_{ACG}_3 - 1D - W & 0.000 & 0.0 & 3.33(-0.20) & 3.33(-0.20) & 113.91 & 48.99 & 483.71 & -0.760 \\ \mbox{GSb}_{BT_3} - 1D - W & 0.000 & 0.0 & 3.33(-0.20) & 3.18(-0.60) & 2.59 & 2.82 & 31.94 & -0.515 \\ \mbox{MFL}_{ACG}_3 - 1D - W & 0.000 & 0.0 & 3.50(-0.01) & 5.06(-0.01) & 8.97 & 9.29 & 259.89 & -0.561 \\ \mbox{GSrb}_3 - 1D - W & 0.000 & 0.0 & 3.50(-0.27) & 3.65(-0.27) & 2.72 & 6.44 & -0.636 \\ \mbox{GSrb}_3 - 1D - W & 0.000 & 0.0 & 3.23(-0.20) & 3.81(-0.29) & 3.40 & 7.22 & 6.44 & -0.636 \\ \mbox{GSrb}_3 - 1D - W & 0.000 & 0.0 & 3.26(-0.07) & 2.54 & 3.07 & 1.490 & -0.484 \\ \mbox{MFPCl}_3 - 1D - W & 0.000 & 0.0 & 3.26(-0.07) & 2.54 & 0.07 & 2.59 & 3.07 & 4.70 & -0.686 \\ \mbox{GSrb}_3 - 1D - W & 0.000 & 0.0 & 2.35(-0.02) & 2.50(-0.01) & 0.55 & 0.56 & 31.36 & -0.579 \\ \mbox{MFPE}_3 - 1D - W & 0.000 & 0.0 & 3.23(-0.07) & 2.54 & 0.078 & 0.94 & 4.70 & -0.416 \\ \mbox{MFPSb}_7 - 1D - W & 0.000 & 0.0 & 3.26(-0.07) & 2.5$				PBE	HSE	gap					
$ \begin{split} & H_{3} \text{SIRC} I_{3} - 1D - W & 0.000 & 0.0 & 2.54(-0.00) & 2.64(-0.00) & 7.11 & 7.14 & >1000 & -0.565 \\ & \text{GCdB}_{13} - 1D - W & 0.000 & 0.0 & 3.44(-0.14) & 3.44(-0.14) & 0.64 & 0.67 & 13.88 & -0.507 \\ & \text{GCd}_{13} - 1D - W & 0.000 & 0.0 & 2.38(-0.25) & 3.43 & 4.07 & 2.1.76 & -0.393 \\ & \text{NH}_{4} \text{GeC}_{13} - 3D - OR & 0.000 & 0.0 & 4.38(-0.04) & 2.88(-0.04) & 0.50 & 1.38 & 0.79 & -0.693 \\ & \text{GCd}_{13} - 1D - W & 0.000 & 0.0 & 4.13(-0.00) & 4.13(-0.00) & 0.78 & 0.81 & 28.03 & -0.583 \\ & \text{NH}_{4} \text{GeF}_{3} - 1D - W & 0.000 & 0.0 & 4.05(-0.00) & 4.06(-0.00) & 0.00 & 0.02 \\ & \text{GCd}_{13} - 1D - W & 0.000 & 0.0 & 5.12(-0.01) & 5.12(-0.01) & 0.42 & 0.44 & 11.27 & -1.211 \\ & \text{H}_{5} \text{AuB}_{13} - 3D - OR & 0.000 & 0.0 & 5.06(-0.00) & 0.00 & 0.00 \\ & \text{GCaC}_{13} - 1D - W & 0.000 & 0.0 & 5.06(-0.00) & 5.06(-0.00) & 0.00 \\ & \text{GCaC}_{13} - 1D - W & 0.000 & 0.0 & 2.51(-0.49) & 2.59(-0.50) & 8.45 & 11.27 & 33.82 & -0.499 \\ & \text{NF}_{CaI_{3}} - 1D - W & 0.000 & 0.0 & 3.33(-0.20) & 3.33(-0.20) & 3.23 & -0.59 \\ & \text{NH}_{4} \text{GC}_{13} - 1D - W & 0.000 & 0.0 & 3.33(-0.20) & 3.18(-0.60) & 2.59 & 2.82 & 31.94 & -0.515 \\ & \text{NH}_{4} \text{MCG}_{13} - 1D - W & 0.000 & 0.0 & 1.99(-0.00) & 2.03(-0.00) & 113.91 & 148.99 & 483.71 & -0.760 \\ & \text{GSrB}_{13} - 1D - W & 0.000 & 0.0 & 3.80(-0.29) & 3.81(-0.29) & 3.40 & 7.22 & 6.44 & -0.636 \\ & \text{GSrB}_{13} - 1D - W & 0.000 & 0.0 & 2.39(-0.08) & 2.54(-0.08) & 7.30 & 14.51 & 14.70 & -0.439 \\ & \text{GCaI}_{3} - 1D - W & 0.000 & 0.0 & 2.39(-0.46) & 2.54(-0.08) & 7.30 & 14.51 & 14.70 & -0.439 \\ & \text{GSrB}_{13} - 1D - W & 0.000 & 0.0 & 2.39(-0.08) & 2.54(-0.08) & 7.30 & 14.51 & 14.70 & -0.439 \\ & \text{GSrB}_{13} - 1D - W & 0.000 & 0.0 & 2.39(-0.46) & 2.54(-0.08) & 7.30 & 14.51 & 14.70 & -0.439 \\ & \text{GSrB}_{13} - 1D - W & 0.000 & 0.0 & 2.39(-0.46) & 2.54(-0.08) & 7.30 & 14.51 & 14.70 & -0.439 \\ & \text{GSrB}_{13} - 1D - W & 0.000 & 0.0 & 2.39(-0.46) & 2.54(-0.47) & 2.09 & 3.76 & 4.70 & -0.648 \\ & \text{GPSI}_{13} - 1D - W & 0.000 & 0.0 & 2.39(-0.68) & 2.54(-0.08) & 7.30 & 14.51 & 14.70 & -0.438 \\ & $	composition	$E_{\rm hull}$	μ/μ_B	fund. (SOC)	direct (SOC)	fund.	direct	m^*	m_e^*	m_h^*	E_{f}
	$H_3SInCl_3 - 1D - W$	0.000	0.0	2.54(-0.00)	2.64 (-0.00)			7.11	7.14	>1000	-0.565
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GCdBr_3 - 1D - W \bullet$	0.000	0.0	3.44(-0.14)	3.44 (-0.14)			0.64	0.67	13.88	-0.507
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GCdI_3 - 1D - W$	0.000	0.0	2.35(-0.25)	2.35 (-0.25)			3.43	4.07	21.76	-0.393
	$NH_4GeCl_3 - 3D - OR$	0.000	0.0	2.88(-0.04)	2.88 (-0.04)			0.50	1.38	0.79	-0.693
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GCdCl_3 - 1D - W$	0.000	0.0	4.13(-0.00)	4.13 (-0.00)			0.78	0.81	28.03	-0.583
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$NH_4GeF_3 - 1D - W$	0.000	0.0	4.05(-0.00)	4.06 (-0.00)			43.22	59.31	159.26	-1.334
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$NH_4CaCl_3 - 1D - R$	0.000	0.0	5.12(-0.01)	5.12 (-0.01)			0.42	0.44	11.27	-1.211
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_3SAuBr_3 - 3D - OR$	0.000	0.0	0.00(0.00)	0.00 (0.00)	0.00	0.00				-0.211
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GCaCl_3 - 1D - W$	0.000	0.0	5.06(-0.00)	5.06 (-0.00)			0.99	1.01	88.94	-0.858
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H_3 SPbBr ₃ – 1D – R	0.000	0.0	2.51(-0.49)	2.59 (-0.50)			8.45	11.27	33.82	-0.499
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$MPCaI_3 - 1D - W$	0.000	0.0	3.33(-0.20)	3.33 (-0.20)			1.27	1.32	31.50	-0.534
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$NH_4CoCl_3 - 1D - W$	0.000	12.0	0.00(-0.01)	0.00 (-0.01)	3.60	3.61	55.42	>1000	55.42	-0.590
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$GPbBr_3 - 1D - W$	0.000	0.0	3.13(-0.60)	3.18 (-0.60)			2.59	2.82	31.94	-0.515
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$NH_4MnCl_3 - 1D - R$	0.000	20.0	1.99(-0.00)	2.03 (-0.00)			113.91	148.99	483.71	-0.760
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$GSrBr_3 - 1D - W$	0.000	0.0	4.54(-0.13)	4.54 (-0.12)			0.60	0.62	25.57	-0.761
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MPBeCl ₃ $- 1D - W$	0.000	0.0	5.05(-0.01)	5.07 (-0.01)			8.97	9.29	259.89	-0.561
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GSrI_3 - 1D - W$	0.000	0.0	3.80(-0.29)	3.81 (-0.29)			3.40	7.22	6.44	-0.636
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_3SSnBr_3 - 1D - R$	0.000	0.0	2.35(-0.08)	2.54 (-0.08)			7.30	14.51	14.70	-0.439
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$GCaI_3 - 1D - W$	0.000	0.0	3.65(-0.27)	3.65 (-0.27)			27.29	160.62	32.88	-0.624
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$NH_4PbBr_3 - 1D - R$	0.000	0.0	2.39(-0.46)	2.47 (-0.47)			2.09	3.76	4.70	-0.686
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$GSnBr_3 - 1D - W$	0.000	0.0	3.23(-0.07)	3.26 (-0.07)			2.54	3.07	14.90	-0.484
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MPInCl_3 - 1D - W$	0.000	0.0	2.33(-0.00)	2.53 (-0.00)			1.58	1.58	>1000	-0.448
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GPbI_3 - 1D - W$	0.000	0.0	2.59(-0.68)	2.66 (-0.66)			0.78	0.94	4.70	-0.416
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MPSnBr_3 - 3D - OR$	0.000	0.0	1.63(-0.19)	1.63 (-0.19)	2.19	2.19	0.22	0.58	0.35	-0.373
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$NH_4HgCl_2 - 1D - R$	0.000	0.0	2.35(-0.02)	2.50 (-0.01)	,	,	0.55	0.56	31.36	-0.605
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MPSrI ₂	0.000	0.0	3.41(-0.18)	3.51 (-0.28)			0.42	0.46	5.15	-0.549
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2SSnI_2 - 1D - R$	0.000	0.0	1.98(-0.18)	2.05 (-0.19)			4.66	13.89	7.02	-0.274
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GSnCl_3 - 1D - W$	0.000	0.0	3.73(-0.05)	3.81 (-0.05)			13.78	14.55	260.48	-0.559
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$MPMnI_2 - 1D - W$	0.000	20.0	1.07(-0.04)	1.07 (-0.04)	3.67	3.67	42.24	>1000	42.27	-0.227
$GPbCl_3 - 1D - W$ 0.000 0.0 $3.55(-0.61)$ $3.61(-0.60)$ 3.55 3.76 64.81 -0.586 $MSTeBr_3 - 1D - W$ 0.000 0.0 $1.43(-0.00)$ $1.52(-0.01)$ 2.31 2.42 8.15 10.33 38.51 -0.234	$NH_4GeBr_2 - 1D - W$	0.000	0.0	3.24(-0.04)	3.25 (-0.04)	0107	0107	2.35	3.36	7.80	-0.570
$MSTeBr_3 - 1D - W \qquad 0.000 \qquad 0.0 \qquad 1.43(-0.00) \qquad 1.52(-0.01) \qquad 2.31 \qquad 2.42 \qquad 8.15 \qquad 10.33 \qquad 38.51 \qquad -0.234$	$GPbCl_2 - 1D - W$	0.000	0.0	3.55(-0.61)	3.61 (-0.60)			3.55	3.76	64.81	-0.586
	MSTeBr ₂ $= 1D - W$	0.000	0.0	143(-0.00)	1 52 (-0.01)	2.31	2.42	8 15	10.33	38 51	-0 234
$MPMnCl_2 = 1D - W = 0.000 20.0 1.52(-0.00) 1.52(-0.00) 44.46 >1000 44.46 -0.467$	$MPMnCl_2 - 1D - W$	0.000	20.0	1.52(-0.00)	1 52 (-0.00)	2101		44 46	>1000	44 46	-0.467
$M_{1} P_{2} C_{1}^{2}$ 0.000 0.0 0.0000 0.000 0.000	NH ₄ PdCl ₂	0.000	0.0	0.00(0.00)	0.00(0.00)	0.00	0.00	11110	/ 1000	11110	-0.556
$H_4 Ca B_{12} = 1D - R$ 0.000 0.0 4.10(-0.10) 4.10(-0.10) 0.00 0.34 0.35 6.64 -1.056	$NH_4CaBr_2 - 1D - R$	0.000	0.0	4.10(-0.10)	4.10 (-0.10)	0.00	0.00	0.34	0.35	6.64	-1.056
MPGeC[3 = 3D - OR = 0.000 = 0.0 3.09(-0.03) = 3.09(-0.03) = 0.05 = 0.0	$MPGeCl_2 = 3D - OR$	0.000	0.0	3.09(-0.03)	3.09 (-0.03)			0.52	1.09	0.99	-0.415
$H_{2}STeBr_{2} = 1D - W = 0.000 = 0.05 (0.002) = 1.05 (0.02) = 1.87 = 1.87 = 363.95 > 1000 = 417.06 = 0.231$	H_2 STeBr ₂ = 1D = W	0.000	0.0	1.05(-0.02)	1.05(-0.02)	1 87	1 87	363.95	>1000	417.06	-0.231
$H_2SAul_2 = 3D - QR = 0.000 = 0.0 = 0.000 (0.02) = 100 (0.02) = 100 (0.00) = 0.000 (0.00) (0.00) = 0.000 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) $	$H_2SA11I_2 - 3D - OR$	0.000	0.0	0.00(0.00)	0.00(0.02)	0.00	0.00	000.70	/1000	117.00	-0.100
$M_{\rm H}$ Auto $-1D = W$ 0.000 0.0 0.54(.0.15) 0.56(.0.04) 1.26 1.30 10.15 42.32 13.36 0.317	$NH_4A_{11}I_2 = 1D = W$	0.000	0.0	0.54(-0.15)	0.56(-0.14)	1.26	1 30	10.15	42 32	13 36	-0.317
$M_{171}M_{173} = 3D - OR = 0.000 = 0.0 = 0.00(0.00) = 0.00(0.00) = 0.00(0.00) = 0.00 = 0.000 = 0.001$	$NH_4TlBr_2 = 3D = OR$	0.000	0.0	0.01(0.10)	0.00(0.11)	0.00	0.00	0.63	0.94	1 88	-0 545
$\frac{1}{100} - \frac{1}{100} = 0.000 0.00$	$MPCaBr_2 = 1D = W$	0.000	0.0	4.07(-0.03)	4 07 (-0 03)	0.00	0.00	0.65	0.68	10 54	-0.679
MPSnC[1] 0.000 0.0 247(0.17) 247(0.18) 0.42 1.23 0.64 0.457	MPSnCl ₂	0.000	0.0	247(-0.17)	2 47 (-0.18)			0.42	1 23	0.64	-0.457
$M_{1}(23) = 10 - W \qquad 0.000 \qquad 0.0 \qquad 2.77((0.17) \qquad 2.77((0.16)) \qquad 0.72 \qquad 1.23 \qquad 0.04 \qquad 0.757 \qquad$	$MH_4CaI_2 = 1D = W$	0.000	0.0	2.7(-0.17) 3 52(-0.20)	2.77 (-0.10)			7 80	46.03	0.07	-0.852
$M_{\rm H}(a_{\rm H}) = 10 - W = 0.000 = 0.0 = 0.02(0.27) = 0.00 (0.20) = 0.00 = 0.00 = 0.00 = 0.00 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.00000 = 0.0000 = 0.0000 = 0.0000 = 0.0000$	$MH_4AuCl_2 = 1D - W$	0.000	0.0	1.02(-0.29)	1 00 (-0.20)	2 26	2 27	40 75	40.00	237 00	-0 514
$H_1 S B T_3 = 1D - R 0.000 0.0 2.23(-0.06) 2.40(-0.07) 1.84 4.32 3.20 -0.635$	$NH_4SnBr_3 - 1D - R$	0.000	0.0	2.23(-0.06)	2.40 (-0.07)	2.20	2.27	1.84	4.32	3.20	-0.635

Table ESI-1 Calculated properties of ABX_3 compounds: distance from the convex hull E_{hull} in eV/atom, magnetic moment μ of the unit cell in units of the Bohr magneton, fundamental and direct band gaps from PBE and HSE06 functionals (including SOC), effective mass m^* in units of the electron mass, and formation energies E_f in eV/atom

			PBE gap		HSE gap					
composition	$E_{\rm hull}$	μ/μ_B	fund.	direct	fund.	direct	m^*	m_e^*	m_h^*	E_{f}
$GCaBr_3 - 1D - W$	0.000	0.0	4.55(-0.05)	4.56 (-0.04)			0.84	1.01	5.18	-0.759
$NH_4SnCl_3 - 1D - W$	0.000	0.0	3.56(-0.05)	3.58 (-0.05)			2.27	2.45	30.80	-0.750
$NH_4SnI_3 - 1D - R$	0.000	0.0	1.87(-0.15)	1.90 (-0.17)			1.76	9.12	2.19	-0.479
$NH_4PbCl_3 - 1D - R$	0.000	0.0	2.87(-0.44)	3.07 (-0.44)			3.52	5.64	9.39	-0.802
NH ₄ AgCl ₃	0.000	0.0	0.00(0.00)	0.00 (0.00)	0.00	0.00				-0.541
$MPSrI_3 - 1D - W$	0.000	0.0	3.32(-0.20)	3.32 (-0.20)			0.55	0.55	40.79	-0.549
$GSnI_3 - 1D - W$	0.000	0.0	2.65(-0.14)	2.71 (-0.11)			1.99	4.88	3.36	-0.386
$H_3SGeCl_3 - 2D$	0.000	0.0	3.32(-0.01)	3.65 (-0.01)			2.73	3.04	27.21	-0.499
MPBeBr ₃ $- 1D - W$	0.000	0.0	4.33(-0.07)	4.35 (-0.09)			1.10	1.11	160.36	-0.433
$NH_4FeBr_3 - 1D - W \bullet$	0.000	16.0	0.00(-0.01)	0.00 (-0.01)	2.51	2.57	> 1000	>1000	>1000	-0.509
$NH_4BeCl_3 - 1D - W$	0.000	0.0	4.94(-0.00)	4.98 (-0.00)			0.56	0.56	353.87	-0.887
MPGeCl ₃	0.000	0.0	2.96(-0.03)	2.96 (-0.02)			0.51	0.83	1.32	-0.415
$NH_4CdCl_3 - 1D - R \bullet$	0.000	0.0	3.51(-0.02)	3.62 (-0.02)			0.42	0.43	10.10	-0.776
$NH_4PbI_3 - 1D - R\bullet$	0.000	0.0	1.88(-0.63)	1.88 (-0.63)			2.50	7.51	3.76	-0.528
GZnBr ₃	0.000	0.0	3.04(-0.05)	3.08 (-0.06)	4.34	4.38	0.54	0.55	25.10	-0.497
$MPSnCl_3 - 3D - OR$	0.001	0.0	2.27(-0.21)	2.27 (-0.21)			0.29	0.80	0.46	-0.457
$MPAuI_3 - 3D - OR$	0.001	0.0	0.00(0.00)	0.00 (0.00)	0.00	0.00				-0.155
MPSnBr ₃	0.001	0.0	1.80(-0.23)	1.80 (-0.20)	2.78	2.83	0.39	1.03	0.63	-0.372
$H_3SCaBr_3 - 1D - R$	0.001	0.0	4.20(-0.09)	4.20 (-0.09)			1.96	1.97	277.12	-0.912
$H_3SInCl_3 - 3D - OR$	0.001	0.0	1.41(-0.00)	2.16 (-0.01)	2.21	2.98	0.36	0.74	0.69	-0.564
$NH_4HgCl_3 - 1D - W$	0.001	0.0	2.71(-0.03)	2.72 (-0.03)			0.90	0.90	221.19	-0.604
$MPInCl_3 - 3D - OR$	0.001	0.0	1.50(-0.01)	2.20 (-0.01)	2.25	3.04	0.64	0.87	2.41	-0.447
MPGeBr ₃ $- 3D - OR$	0.001	0.0	2.31(-0.05)	2.31 (-0.05)			0.37	0.62	0.90	-0.327
$NH_4SnBr_3 - 1D - W$	0.001	0.0	3.05(-0.07)	3.08 (-0.07)			1.78	2.27	8.31	-0.634
MPGeBr ₃	0.001	0.0	2.44(-0.05)	2.44 (-0.05)			0.63	0.77	3.48	-0.326
$NH_4AuBr_3 - 1D - W$	0.001	0.0	0.70(-0.19)	0.71 (-0.18)	1.70	1.70	13.63	13.77	>1000	-0.420
$NH_4ZnBr_3 - 1D - W$	0.001	0.0	3.52(-0.09)	3.52 (-0.09)			0.45	0.46	26.56	-0.672
$H_3SSrI_3 - 1D - R$	0.001	0.0	3.39(-0.21)	3.39 (-0.21)			2.77	2.82	159.68	-0.721
$H_3SSnBr_3 - 2D$	0.002	0.0	2.28(-0.10)	2.47 (-0.13)			1.35	3.02	2.43	-0.438
$NH_4PbI_3 - 1D - W \bullet$	0.002	0.0	2.35(-0.75)	2.45 (-0.73)			2.35	2.82	14.09	-0.527
$NH_4AuBr_3 - 2D$	0.002	0.0	0.58(-0.04)	0.64 (-0.05)	1.22	1.31	6.54	18.35	10.17	-0.420
MPPbCl ₃ $- 1D - W$	0.002	0.0	3.31(-0.42)	3.36 (-0.46)			0.93	0.94	180.35	-0.486
$NH_4AuI_3 - 2D$	0.002	0.0	0.25(-0.05)	0.25 (-0.08)	1.00	1.10	1.35	5.24	1.81	-0.315
$H_3SGeCl_3 - 3D - OR$	0.002	0.0	2.68(-0.05)	2.68 (-0.05)			0.45	1.47	0.64	-0.498
$NH_4TlCl_3 - 1D - W$	0.002	0.0	1.48(-0.00)	1.60 (-0.00)	2.45	2.56	3.79	3.80	935.51	-0.668
$MSAuBr_3 - 3D - OR$	0.002	0.0	0.00(0.00)	0.00 (0.00)	0.00	0.00				-0.211
$MPCdCl_3 - 1D - W$	0.002	0.0	3.73(-0.01)	3.73 (-0.01)			0.65	0.65	419.77	-0.465
$NH_4SnI_3 - 1D - W$	0.002	0.0	2.44(-0.18)	2.55 (-0.13)			1.63	2.97	3.61	-0.477
$NH_4ZnCl_3 - 1D - W$	0.002	0.0	3.95(-0.00)	3.95 (-0.00)			0.56	0.56	>1000	-0.796
$MPMnBr_3 - 1D - W$	0.002	20.0	1.38(-0.01)	1.38 (-0.01)			15.92	26.05	40.92	-0.358
$NH_4MnCl_3 - 1D - W$	0.002	20.0	1.14(-0.00)	1.17 (-0.00)			78.36	>1000	78.37	-0.758
$MPZnBr_3 - 1D - W$	0.002	0.0	3.15(-0.05)	3.15 (-0.05)			0.65	0.65	>1000	-0.399
$NH_4MgCl_3 - 1D - W$	0.003	0.0	4.83(-0.01)	4.83 (-0.01)			0.44	0.44	628.49	-1.024
$NH_4SnCl_3 - 1D - R$	0.003	0.0	2.63(-0.04)	2.92 (-0.04)			2.87	5.00	6.73	-0.747
$H_3SGeBr_3 - 1D - W$	0.003	0.0	3.33(-0.04)	3.44 (-0.05)			5.93	6.93	41.26	-0.369

Table ESI-2 Continuation of Table ESI-1

	PBE gap				HSF	Egap				
composition	$E_{\rm hull}$	μ/μ_B	fund.	direct	fund.	direct	m^*	m_e^*	m_h^*	E_{f}
$H_3SSnCl_3 - 1D - R$	0.003	0.0	3.05(-0.04)	3.49 (-0.04)			10.07	15.00	30.67	-0.565
$tBASnI_3 - 1D - W$	0.003	0.0	2.55(-0.19)	2.60 (-0.20)			2.61	23.16	2.94	-0.298
$GGeF_3 - 1D - W$	0.003	0.0	4.72(-0.00)	4.72 (-0.00)			1.79	1.88	39.45	-0.942
$MSHgBr_3 - 1D - W$	0.003	0.0	2.33(-0.09)	2.33 (-0.09)			0.88	0.88	761.29	-0.290
$NH_4GeI_3 - 1D - W$	0.003	0.0	2.59(-0.13)	2.76 (-0.16)			0.75	0.94	3.76	-0.418
$GGeI_3 - 1D - W$	0.003	0.0	2.80(-0.13)	2.91 (-0.13)			1.57	2.23	5.36	-0.346
$MPSnBr_3 - 1D - W$	0.003	0.0	2.78(-0.05)	2.88 (-0.05)			0.74	0.86	5.59	-0.370
$MPSnI_3 - 1D - W$	0.003	0.0	2.01(-0.10)	2.16 (-0.12)			0.51	0.55	6.55	-0.260
$NH_4InCl_3 - 1D - W$	0.003	0.0	2.16(-0.00)	2.35 (-0.00)			1.81	1.81	> 1000	-0.747
$H_3SGeBr_3 - 3D - OR$	0.003	0.0	1.76(-0.06)	1.76 (-0.06)	2.36	2.36	0.23	0.58	0.37	-0.368
$H_3SSnBr_3 - 3D - OR$	0.004	0.0	1.26(-0.29)	1.26 (-0.29)	1.67	1.67	0.22	0.77	0.30	-0.436
NH ₄ AgBr ₃	0.004	0.0	0.00(0.00)	0.00 (0.00)	0.00	0.00				-0.445
$NH_4MnBr_3 - 1D - W$	0.004	20.0	1.32(-0.01)	1.33 (-0.01)			14.03	>1000	14.09	-0.627
$H_3SGeCl_3 - 1D - R$	0.004	0.0	3.51(-0.01)	3.75 (-0.01)			3.95	4.33	45.11	-0.496
$H_3SGeCl_3 - 1D - W$	0.004	0.0	3.67(-0.01)	3.73 (-0.02)			7.36	7.80	131.74	-0.496
$MPGeBr_3 - 1D - W$	0.004	0.0	2.95(-0.03)	3.04 (-0.03)			0.71	0.83	4.86	-0.323
$tBAHgBr_3 - 1D - W$	0.004	0.0	2.39(-0.08)	2.39 (-0.08)			2.15	2.15	> 1000	-0.320
$H_3SZnCl_3 - 1D - W$	0.004	0.0	3.84(-0.00)	3.84 (-0.00)			0.90	0.90	> 1000	-0.618
$NH_4GeCl_3 - 1D - W$	0.004	0.0	3.78(-0.01)	3.89 (-0.01)			2.91	3.44	18.86	-0.689
H_3 SPbBr ₃ – 2D	0.004	0.0	2.20(-0.63)	2.33 (-0.65)			0.63	0.94	1.88	-0.495
$MSPbBr_3 - 1D - R$	0.004	0.0	2.52(-0.50)	2.58 (-0.51)			44.28	149.35	62.93	-0.418
MPHgBr ₃ $- 1D - W$	0.005	0.0	2.30(-0.09)	2.30 (-0.09)			0.77	0.77	>1000	-0.285
$MPFeBr_3 - 1D - W$	0.005	16.0	0.00(-0.01)	0.00 (-0.01)	2.65	2.65	> 1000	>1000	>1000	-0.271
$H_3SSnCl_3 - 3D - OR$	0.005	0.0	2.05(-0.23)	2.06 (-0.22)			0.37	1.25	0.53	-0.564
$NH_4AuCl_3 - 2D$	0.005	0.0	0.77(-0.09)	0.78 (-0.10)	1.53	1.56	2.29	37.53	2.44	-0.509
$NH_4CaI_3 - 1D - R$	0.005	0.0	3.33(-0.25)	3.33 (-0.25)			0.35	0.38	4.14	-0.847
$GBaI_3 - 1D - W$	0.005	0.0	3.54(-0.29)	3.54 (-0.29)			3.93	130.12	4.05	-0.643
$H_3SSnCl_3 - 2D$	0.005	0.0	2.72(-0.06)	3.04 (-0.06)			3.02	5.20	7.22	-0.563
H ₃ SCdI ₃	0.005	0.0	1.81(-0.24)	1.81 (-0.24)			0.32	0.32	39.23	-0.296
$MSAuBr_3 - 1D - W$	0.005	0.0	0.24(-0.26)	0.26 (-0.25)	1.23	1.24	315.48	519.74	802.75	-0.208
$NH_4AuBr_3 - 3D - OR$	0.005	0.0	0.00(0.00)	0.00 (0.00)	0.00	0.00				-0.416
$NH_4PbBr_3 - 1D - W$	0.005	0.0	2.98(-0.53)	3.01 (-0.51)			1.97	2.82	6.58	-0.681
$NH_4CaCl_3 - 2D$	0.005	0.0	5.02(-0.02)	5.02 (-0.02)			0.47	0.49	13.15	-1.206
$MPZnCl_3 - 1D - W$	0.005	0.0	3.97(-0.00)	3.97 (-0.00)			0.81	0.81	812.91	-0.476
$NH_4PbCl_3 - 2D$	0.005	0.0	2.68(-0.54)	2.79 (-0.54)			0.63	0.94	1.88	-0.797
$MPCaBr_3 - 1D - R$	0.005	0.0	3.68(-0.06)	3.68 (-0.06)			193.70	194.58	>1000	-0.674
$tBABeCl_3 - 1D - W$	0.005	0.0	5.14(-0.00)	5.17 (-0.00)			0.65	0.65	> 1000	-0.474
H ₃ SGeCl ₃	0.005	0.0	1.96(-0.03)	1.96 (-0.03)	2.55	2.55	0.28	1.07	0.37	-0.494
$MPSnI_3 - 3D - OR$	0.005	0.0	0.73(-0.30)	0.73 (-0.30)	1.18	1.18	0.16	0.64	0.22	-0.257
$MSPbBr_3 - 2D$	0.005	0.0	2.27(-0.62)	2.47 (-0.56)			1.41	1.88	5.64	-0.417
MPPbBr ₃ $- 3D - OR$	0.005	0.0	1.09(-1.07)	1.09 (-1.07)			0.20	0.52	0.32	-0.402
$NH_4CoBr_3 - 1D - W$	0.006	12.0	0.00(0.00)	0.00 (0.00)	3.38	3.39	77.80	654.70	88.30	-0.453
MPPbBr ₃ $- 1D - W$	0.006	0.0	2.87(-0.35)	2.93 (-0.41)			0.69	0.74	9.68	-0.402
$NH_4SnBr_3 - 2D$	0.006	0.0	1.98(-0.12)	2.12 (-0.12)			0.54	1.25	0.94	-0.629
$NH_4SnCl_3 - 2D$	0.006	0.0	2.42(-0.09)	2.59 (-0.09)			0.68	1.39	1.34	-0.744

Table ESI-3 Continuation of Table ESI-2

	PBE gap				HSF	gap				
composition	$E_{\rm hull}$	μ/μ_B	fund.	direct	fund.	direct	m^*	m_e^*	m_h^*	$E_{ m f}$
$MPPbCl_3 - 3D - OR$	0.006	0.0	1.58(-1.04)	1.58 (-1.04)			0.24	0.71	0.37	-0.482
$NH_4CdBr_3 - 1D - R \bullet$	0.006	0.0	2.64(-0.09)	2.69 (-0.13)			0.31	0.33	7.88	-0.658
MPPbCl ₃	0.006	0.0	2.10(-0.91)	2.10 (-0.91)			1.82	1.88	61.06	-0.481
MPPbBr ₃	0.006	0.0	1.49(-0.93)	1.49 (-0.93)			1.46	1.88	6.58	-0.401
$NH_4MgBr_3 - 1D - W$	0.006	0.0	4.13(-0.06)	4.13 (-0.06)			0.34	0.36	6.12	-0.868
$H_3SSnCl_3 - 1D - W$	0.006	0.0	3.51(-0.04)	3.55 (-0.04)			3.61	3.63	962.91	-0.562
$GGeCl_3 - 1D - W$	0.006	0.0	4.18(-0.01)	4.22 (-0.01)			3.03	3.18	63.68	-0.523
$H_3SGeF_3 - 3D - OR$	0.006	0.0	4.35(-0.03)	4.37 (-0.02)			1.00	2.15	1.86	-1.220
$H_3SCdI_3 - 1D - W$	0.006	0.0	2.43(-0.20)	2.43 (-0.24)			0.62	0.63	84.35	-0.295
$NH_4GeBr_3 - 1D - R$	0.007	0.0	2.41(-0.03)	2.54 (-0.04)			3.30	14.39	4.29	-0.564
$NH_4PbBr_3 - 2D$	0.007	0.0	2.16(-0.60)	2.22 (-0.60)			0.47	0.94	0.94	-0.680
$NH_4CaCl_3 - 3D - OR$	0.007	0.0	4.78(-0.00)	4.90 (-0.00)			0.47	0.48	22.13	-1.205
$MPGeCl_3 - 1D - W$	0.007	0.0	3.62(-0.00)	3.73 (-0.00)			1.09	1.13	32.22	-0.408
MPSnI ₃	0.007	0.0	0.89(-0.27)	0.89 (-0.27)	1.35	1.35	0.52	0.89	1.23	-0.256
$H_3SSnBr_3 - 1D - W$	0.007	0.0	3.07(-0.05)	3.12 (-0.06)			2.65	2.94	27.44	-0.432
$MSSrI_3 - 1D - R$	0.007	0.0	3.15(-0.21)	3.15 (-0.21)			108.80	148.61	406.09	-0.578
MPPbBr ₃ $- 1D - R$	0.007	0.0	2.46(-0.43)	2.60 (-0.44)			50.53	116.47	89.23	-0.400
$MPZnCl_3 - 2D$	0.007	0.0	3.91(-0.01)	3.92 (-0.01)			1.58	1.58	>1000	-0.474
$GSnCl_3 - 3D - OR$	0.007	0.0	2.48(-0.13)	2.48 (-0.13)			0.44	1.61	0.60	-0.552
$NH_4AgBr_3 - 2D$	0.007	0.0	0.11(-0.03)	0.30 (-0.04)	0.73	0.92	0.06	0.12	0.12	-0.441
$NH_4HgCl_3 - 3D - OR$	0.007	0.0	1.97(-0.02)	2.38 (-0.02)	3.19	3.71	0.63	0.75	4.11	-0.597
$EASnI_3 - 1D - W$	0.007	0.0	2.48(-0.14)	2.53 (-0.17)			2.09	3.76	4.70	-0.344
$NH_4SrCl_3 - 1D - R$	0.007	0.0	5.00(-0.02)	5.00 (-0.02)			0.43	0.44	18.19	-1.228
$H_3SCaBr_3 - 2D$	0.007	0.0	4.24(-0.10)	4.24 (-0.13)			1.41	1.59	12.74	-0.905
$MSZnBr_3 - 1D - W$	0.008	0.0	3.28(-0.05)	3.28 (-0.05)			0.68	0.68	>1000	-0.407
$tBABeBr_3 - 1D - W$	0.008	0.0	4.42(-0.08)	4.43 (-0.09)			0.32	0.32	>1000	-0.399
NH ₄ MnCl ₃	0.008	5.0	1.02(-0.00)	1.65 (0.00)	3.52	5.61	0.68	2.03	1.03	-0.753
$H_3SGeBr_3 - 1D - R$	0.008	0.0	3.00(-0.05)	3.30 (-0.04)			6.19	8.52	22.62	-0.364
$H_3SZnBr_3 - 1D - W$	0.008	0.0	3.50(-0.08)	3.52 (-0.10)			0.52	0.52	513.50	-0.479
$NH_4PbI_3 - 2D\bullet$	0.008	0.0	1.64(-0.77)	1.64 (-0.77)			0.70	2.82	0.94	-0.521
$MSPbBr_3 - 1D - W$	0.008	0.0	2.83(-0.40)	2.88 (-0.43)			0.87	0.94	11.27	-0.415
$MPCaI_3 - 1D - R$	0.008	0.0	3.07(-0.18)	3.07 (-0.18)			231.08	242.47	>1000	-0.526
$NH_4CaBr_3 - 2D$	0.008	0.0	4.04(-0.12)	4.04 (-0.12)			0.36	0.38	7.60	-1.048
$GGeBr_3 - 1D - W$	0.008	0.0	3.54(-0.03)	3.56 (-0.04)			0.15	0.91	0.18	-0.445
$tBASrI_3 - 1D - W$	0.008	0.0	3.75(-0.18)	3.75 (-0.18)			0.60	0.61	73.62	-0.466
NH ₄ CuCl ₃	0.008	0.0	0.00(0.00)	0.00 (0.00)	0.00	0.00				-0.564
$H_3SCdI_3 - 3D - OR$	0.008	0.0	1.97(-0.25)	1.98 (-0.24)			0.55	0.56	27.21	-0.293
$NH_4AgCl_3 - 2D$	0.008	0.0	0.31(-0.00)	0.43 (-0.00)	1.31	1.44	1.61	3.20	3.22	-0.533
$NH_4SnF_3 - 3D - OR$	0.008	0.0	3.74(-0.02)	3.74 (-0.02)			0.88	1.36	2.51	-1.387
$NH_4GeI_3 - 1D - R$	0.008	0.0	1.96(-0.14)	2.01 (-0.17)			2.56	28.18	2.82	-0.413
$GSnBr_3 - 3D - OR$	0.008	0.0	1.95(-0.18)	1.95 (-0.18)			0.35	1.25	0.48	-0.476
$MSSeBr_3 - 3D - OR$	0.008	0.0	0.37(0.01)	0.38 (0.00)	1.54	1.55	26.86	68.57	44.15	-0.187
MPBeCl ₃	0.008	0.0	4.90(-0.01)	5.01 (-0.00)			0.90	0.93	35.12	-0.552
$NH_4SnI_3 - 2D$	0.008	0.0	1.59(-0.20)	1.65 (-0.23)	2.31	2.36	0.53	2.59	0.67	-0.471
$H_3SZnCl_3 - 1D - R$	0.008	0.0	3.99(-0.02)	4.00 (-0.03)			0.54	0.54	977.79	-0.614

Table ESI-5 Continuation of Table ESI-4

			PBE	E gap	HSE	l gap				
composition	$E_{\rm hull}$	μ/μ_B	fund.	direct	fund.	direct	m^*	m_e^*	m_h^*	E_{f}
$GZnBr_3 - 1D - W$	0.008	0.0	3.60(-0.05)	3.60 (-0.05)			0.62	0.63	62.30	-0.489
MSPbBr ₃	0.009	0.0	1.07(-0.96)	1.07 (-0.96)			0.25	0.84	0.35	-0.414
MPMnI ₃	0.009	5.0	1.58(-0.19)	1.73 (-0.17)			10.69	63.79	12.85	-0.218
$GZnCl_3 - 1D - W$	0.009	0.0	4.50(-0.00)	4.50 (-0.00)			0.69	0.70	58.38	-0.582
$MPPbCl_3 - 1D - R$	0.009	0.0	2.85(-0.36)	3.12 (-0.37)			52.36	69.51	212.28	-0.479
H_3 SPbCl ₃ – 1D – R	0.009	0.0	2.92(-0.45)	3.13 (-0.45)			14.60	20.66	49.78	-0.623
$NH_4HgBr_3 - 3D - OR$	0.009	0.0	2.06(-0.07)	2.07 (-0.06)			0.69	0.74	8.61	-0.516
$MPCdBr_3 - 1D - W$	0.009	0.0	2.98(-0.06)	2.98 (-0.06)			0.54	0.54	73.85	-0.384
$MPSnCl_3 - 1D - W$	0.009	0.0	3.30(-0.02)	3.38 (-0.02)			0.87	0.88	74.22	-0.448
$NH_4InBr_3 - 1D - W$	0.009	-0.0	1.54(-0.01)	1.81 (-0.02)	2.43	2.69	1.07	1.11	33.31	-0.629
NH ₄ GeF ₃	0.009	0.0	4.01(-0.02)	4.01 (-0.04)	5.13	5.14	0.61	1.33	1.11	-1.324
$MPMgCl_3 - 1D - W$	0.009	0.0	4.51(-0.00)	4.51 (-0.00)			0.65	0.70	9.27	-0.652
$NH_4GeCl_3 - 2D$	0.009	0.0	3.13(-0.04)	3.37 (-0.02)			1.18	2.26	2.49	-0.684
$MSCaBr_3 - 2D$	0.010	0.0	4.15(-0.13)	4.17 (-0.12)			1.04	1.12	14.48	-0.715
$MSTeBr_3 - 1D - R$	0.010	0.0	0.42(0.12)	0.44 (0.13)	1.53	1.55	54.27	122.11	97.69	-0.225
$H_3SZnCl_3 - 3D - OR$	0.010	0.0	3.94(-0.01)	3.95 (-0.01)			0.57	0.57	86.43	-0.613
$MPGeBr_3 - 2D$	0.010	0.0	3.16(-0.06)	3.28 (-0.05)			1.94	2.15	20.11	-0.318
$MPSrBr_3 - 3D - OR$	0.010	0.0	4.36(-0.08)	4.40 (-0.07)			0.60	0.64	8.28	-0.696
$GSnF_3 - 1D - W$	0.010	0.0	3.95(-0.01)	3.95 (-0.01)			1.41	1.88	5.64	-0.964
$NH_4CdBr_3 - 1D - W \bullet$	0.010	0.0	2.93(-0.10)	2.95 (-0.07)			0.42	0.43	16.03	-0.653
NH ₄ BeCl ₃	0.010	0.0	5.01(-0.01)	5.14 (-0.00)	6.38	6.51	0.46	0.51	4.93	-0.877
$MPGeCl_3 - 2D$	0.010	0.0	3.44(-0.01)	3.71 (-0.01)			1.46	1.52	39.72	-0.405
GZnI ₃	0.010	0.0	2.85(-0.16)	3.00 (-0.22)	3.94	4.07	0.60	0.65	7.61	-0.387