Electronic Supplementary Information

Simple and effective fabrication of Sb_2Te_3 films embedded with Ag_2Te nanoprecipitates for enhanced thermoelectric performance

Jiwon Kim,^a Kyu Hyoung Lee,^b Sung-Dae Kim,^c Jae-Hong Lim,^{a*} and Nosang V. Myung^{d*}

^aElectrochemistry Research Group, Materials Processing Division, Korea Institute of Materials Science, Changwon-si, Gyeongnam 51508, Republic of Korea

^bDepartment of Nano Applied Engineering, Kangwon National University, Chuncheon-si, Kangwon 24341, Republic of Korea

^cMaterials Modeling & Characterization Department, Korea Institute of Materials Science, Changwon-si, Gyeongnam 51508, Republic of Korea

^dDepartment of Chemical and Environmental Engineering and Winston Chung Global Energy Center, University of California-Riverside, Riverside, California 92521, USA

Figure S1. (a) Compositions of the $Ag_xSb_yTe_z$ films as a function of Ag^+ concentration. The electrolyte employed consisted of 2.4 mM HTeO₂⁺, 3.6 mM $[Sb(C_4H_2O_6)_2]^{2-}$, 33 mM $C_4H_6O_6$, and 1 M HNO₃. The Ag⁺ concentration was varied from 0 to 1000 μ M. The triangles, circles, and squares denote Te, Sb, and Ag, respectively. The applied potential was fixed at -0.1 V (vs. SCE). (b) For clarity, the Ag compositions are also plotted on a logarithmic scale.

Figure S2. SEM images of the $Ag_{3,9}Sb_{33,6}Te_{62,5}$ film. (a) and (b) show a cross-section and the surface morphology of the film, respectively.

Figure S3. TEM images showing the precipitated Ag_2Te nanodots in the Sb_2Te_3 matrix.

annealing temperature	conductivity	carrier conc.	mobility
(°C)	(S·cm ⁻¹)	(cm ⁻³)	$(cm^2 \cdot V^{-1} \cdot s^{-1})$
as-prepared	4.32×10 ⁻²	1.81×10 ¹⁷	0.88
40	5.23×10 ⁻²	2.91×10 ¹⁷	0.66
50	4.97×10 ⁻²	2.39×10 ¹⁷	0.76
60	5.12×10 ⁻¹	2.26×10 ¹⁸	0.83
70	5.52	2.34×10 ¹⁹	0.87
80	2.83×10 ¹	1.86×10 ¹⁹	5.58
90	8.20×10 ²	1.99×10 ²⁰	15.11
100	1.82×10 ³	1.86×10 ²⁰	35.97

Table S1. Electrical properties of the Ag_{3.9}Sb_{33.6}Te_{62.5} films as a function of annealing temperature

As shown in Table S1, the carrier concentrations of the film samples varied from 10^{17} to 10^{20} cm⁻³ as the crystallinity increased. In addition, we found that the mobility increased with increasing annealing temperature, which is consistent with the enhancement of crystallinity observed for the various film samples.