Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A Simple Strategy toward Hierarchically Porous Graphene/Nitrogen-Rich Carbon Foams for High-Performance Supercapacitors

Yue Chen, Zechuan Xiao, Yongchang Liu, Li-Zhen Fan*

Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

*Tel./fax: +86 10 62334311. E-mail: fanlizhen@ustb.edu.cn (L.-Z. Fan).

Fig. S1 SEM images of the dried melamine foam/GO/KOH mixtures at (a) low magnification and (b) high magnification.

Fig. S2 N 1s XPS spectra of (a) the aMG-4 and (b) the aMG-10. C 1s XPS spectra of (c) the aMG-4 and (d) the aMG-10.

Fig. S3 C 1s XPS spectra of (a) the carbonized melamine foam, (b) the aMG-0, and (c) the aMG-7.

Fig. S4 CV curves at a scan rate of 1 mV s⁻¹ in 6 mol L⁻¹ KOH aqueous solution

Samples	C at%	O at%	N at%	N-6	N-5	N-Q	N-X
cMF	67.2	16.2	16.6	53.40	14.15	32.45	
aMG-0	84.2	4.8	11.0	42.57	6.30	39.05	12.08
aMG-4	86.2	2.1	11.7	39.96	1.71	38.45	19.88
aMG-7	85.6	2.8	11.6	35.97	9.16	38.25	16.62
aMG-10	81.7	6.5	11.8	22.89	30.96	28.48	17.67

Table S1. Elemental compositions of the samples quantified by XPS.

		Specific capacitance	Capacitance	
Sampples	Electrolytes		Retention (Cycling	Ref.
		$(F g^{-1})$	Number)	
			,	
		325 (0.1 A g ⁻¹)		
aMG-7	6 M KOH	221 (1 A g ⁻¹)	99.5% (10000)	This work
		185 (10 A g ⁻¹)		
3D-HPCFs ^a	6 M KOH	139 (10 A g ⁻¹)	94% (1000)	[S1]
GNRs-PU ^b	2M KCl	87.5 (100 mV s ⁻¹)	92% (5000)	[S2]
STGS ^c	0.5 M NaCl	57 (10 mV s ⁻¹)	/	[S3]
HP-CF ^d	3 M KOH	136.3 (50 mV s ⁻¹)	91.2% (10000)	[S4]
N-CNTs/CF ^e	6 M KOH	133.1 (0.5 A g ⁻¹)	/	[S5]

Table S2. Specific capacitance of the nitrogen-containing and foam-like structures in threeelectrode systems.

Note: ^a Three-dimensional hierarchically porous carbon-CNT-graphene ternary all-carbon foams; ^b Polyurethane-based graphene nanoribbons; ^c Sponge-templated graphene; ^d Nitrogen-doped hierarchically porous carbon foam; ^e Carbon hybrid is fabricated with N-doped carbon nanotubes on skeleton of carbon foam.

sampples	Electrolytes	Specific capacitance (F g ⁻¹)	Capacitance Retention (Cycling Number)	Ref.
	PVA/KOH	212 (0.1 A g ⁻¹)		
aMG-7	gel	168 (1 A g ⁻¹)	99% (10000)	This work
		142 (10 A g ⁻¹)		
N-CNTs/CF ^a	6 M KOH	133.1 (0.5 A g ⁻¹)	95% (5000)	[S5]
NGA ^b	$1 \text{ M H}_2\text{SO}_4$	223 (0.2 A g ⁻¹)	92% (2000)	[S6]
oMR rGO. ^c	1 M LiPF ₆	210 (0.5 Å σ^{-1})	96% (2000)	[87]
clvirk-roo _{th}	/EC/DEC	210 (0.5 A g)	9070 (20000)	
MnO.//NPC d	PVA/LiCl	182 5 (1 Λ σ ⁻¹)	93 4% (6000)	[S8]
$VIIIO_2//1VIC$	gel	162.5 (I A g)	95.470 (0000)	
NCCF-rGO ¢	PVA/KOH	200 (0 1 $\Delta \sigma^{-1}$)	94% (10000)	[89]
1001-100	gel	200 (0.1 11 g)	> +/0 (10000)	

 Table S3. Specific capacitance of the nitrogen-containing and foam-like structures in twoelectrode systems.

Note: ^a Carbon hybrid is fabricated with N-doped carbon nanotubes on skeleton of carbon foam; ^b N-doped graphene aerogel; ^c Melamine-derived carbon/rGO; ^d Nitrogen-doped porous carbon derived from residuary shaddock peel, an all-solid-state ASC device based on the NPC negative electrode and a MnO₂ positive electrode; ^c N-doping cotton-derived carbon frameworks/graphene aerogels; those reported capacitance values were calculated based on a single electrode.

Supplementary References

[S1] B. You, J. H. Jiang and S. J. Fan, ACS Appl. Mater. Interfaces, 2014, 6, 15302-15308.

[S2] Y. J. Ding, J. Q. Zhu and Y. B. Lin, Carbon, 2016, 104, 133-140.

- [S3] Z. Y. Yang, L. J. Jin, G. Q. Lu, Q. Q. Xiao, Y. X. Zhang, L. Jing, X. X. Zhang, Y. M. Yan and K. N. Sun, *Adv. Funct. Mater.*, 2014, 24, 3917-3925.
- [S4] J. Z. Chen, J. L. Xu, S. Zhou, N. Zhao and C. P. Wong, *Nano Energy*, 2016, 25,193-202.

[S5] S. J. He, H. Q. Hou and W. Chen, J. Power Sources, 2015, 280, 678-686.

- [S6] Z. Y. Sui, Y. N. Meng, P. W. Xiao, Z. Q. Zhao, Z. X. Wei and B. H. Han, ACS Appl. Mater. Interfaces, 2015, 7, 1431-1438.
- [S7] J. H. Lee, N. Park, B. G. Kim, D. S. Jung, K. Im, J. Hur and J. W. Choi, *ACS Nano*, 2013, 7, 9366-9374.
- [S8] K. Xiao, L. X. Ding, H. B. Chen, S. Q. Wang, X. H. Lu, and H. H. Wang, J. Mater. Chem. A, 2016, 4, 372-378.
- [S9] Y. M. Fan, W. L. S, X. G. L, L. Z. Fan, Carbon, 2017, 111, 658-666.