Supporting Information

Biowaste Derived 3D Honeycomb-Like Porous Carbon with Binary-Heteroatom Doping for High Performance Flexible Solid-State Supercapacitors

Yuxi Liu, Zechuan, Xiao, Yongchang Liu, Li-Zhen Fan*

Institute of Advanced Materials and Technology, University of Science and Technology Beijing,

Beijing 100083 China

*Corresponding author: E-mail: fanlizhen@ustb.edu.cn Tel. /Fax: +86-10-62334311

Fig. S1 SEM images of the a) ACS1:1 and b) ACS4:1.

Fig. S2 Raman spectra of the CS, ACS2:1, N-ACS2:1 and N,S-ACS2:1.

Fig. S3 CV curves of the CS, ACS2:1, N-ACS2:1 and N,S-ACS2:1 electrodes at a scan rate of 1 mV

s⁻¹.

Fig. S4 Nyquist plots for the samples of CS, ACS2:1, N-ACS2:1, and N,S-ACS2:1.

Fig. S5 Electrochemical performance of the CS, ACS1:1, ACS2:1 and ACS4:1 electrodes measured in 6 mol L⁻¹ KOH using three-electrode systems: a) CV curves at a scan rate of 10 mV s⁻¹. b) Typical galavanostatic charge-discharge profiles of the samples at a current density of 1 A g⁻¹. c) Nyquist plots. d) Specific capacitance of the samples at different current densities.

Fig. S6 Schematic illustration of the solid-state supercapacitor using N,S-ACS2:1 as the electrodes with a polymer electrolyte gel as the electrolyte and separator.

Materials	Specific surface area (m ² g ⁻¹)	Electrolyte	Current density	Specific capacitance (F g ⁻¹)	Ref.
N-C-RGO-Networks	332.6	6M KOH	1 A g ⁻¹	250	[S1]
Eggshell membrane	221.2	1M KOH	0.2 A g ⁻¹	297	[S2]
Carbonized eggshell membrane	221.2	1M KOH	4 A g ⁻¹	228	[S3]
lotus stems	1610	6M KOH	5 mV s ⁻¹	174	[S4]
N,S-doped Willow catkin derived porous carbon sheets	1533	6M KOH	0.5 A g ⁻¹	298	[85]
Lignin	907	1M H ₂ SO ₄	0.05 A g ⁻¹	165	[S6]
Pomelo peel derived carbon	272	6M KOH	0.2 A g ⁻¹	342	[S7]
Yogurt	1300	6M KOH	2 A g ⁻¹	225	[S8]
Cotton	1563	6M KOH	0.1 A g ⁻¹	314	[S9]
Bamboo byproduct	1472	6M KOH	0.1 A g ⁻¹	301	[S10]
ACS2:1	1909.4	6М КОН	0.1 A g ⁻¹	345	This
			1 A g ⁻¹	248.1	work
N,S-ACS2:1	1872 6	6М КОН	0.1 A g ⁻¹	404.2	This
	10/3.0		1 A g ⁻¹	303.6	work

 Table S1 Summary of electrochemical parameters of biomass/biowaste derived carbon as supercapacitor electrodes.

Supplementary References

- [S1]W. L. Song, K. Song and L. Z. Fan, ACS Appl. Mater. Interfaces, 2015, 7, 4257-4264.
- [S2]Z. Li, L. Zhang, B. S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B. C. Olsen, C. B. Holt and D. Mitlin, *Adv. Energy Mater.*, 2012, 2, 431-437.
- [S3]Z. Li, L. Zhang, B. S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B. C. Olsen, C. M. B. Holt and D. Mitlin, *Adv. Energy Mater.*, 2012, 2, 431-437.
- [S4]Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q. H. Yang and J. Luo, Adv. Funct. Mater., 2017, 27, 1604687.
- [S5]Y. Li, G. Wang, T.Wei, Z. Fan and P. Yan, Nano Energy, 2016, 19, 165-175.
- [S6]W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu and M. Zhao, ChenSusChem, 2015, 8, 2114-2122.
- [S7]Q. Liang, L. Ye, Z. H. Huang, Q. Xu, Y. Bai, F. Kang and Q. H. Yang, Nanoscale, 2014, 6, 13831-13837.
- [S8]M. Wahid, G. Parte, D. Phase and S. Ogale, J. Mater. Chem. A, 2015, 3, 1208-1215.
- [S9]K. Song, W. L. Song and L. Z. Fan, J. Mater. Chem. A, 2015, 3, 16104-16111.
- [S10] W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang and H. Zhang, J. Mater. Chem. A, 2015, 3, 5656-5664.